Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapffunc Structured version   Visualization version   GIF version

Theorem swapffunc 49244
Description: The swap functor is a functor. (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapfid.c (𝜑𝐶 ∈ Cat)
swapfid.d (𝜑𝐷 ∈ Cat)
swapfid.s 𝑆 = (𝐶 ×c 𝐷)
swapfid.t 𝑇 = (𝐷 ×c 𝐶)
swapfid.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapffunc (𝜑𝑂(𝑆 Func 𝑇)𝑃)

Proof of Theorem swapffunc
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2729 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2729 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
4 eqid 2729 . 2 (Hom ‘𝑇) = (Hom ‘𝑇)
5 eqid 2729 . 2 (Id‘𝑆) = (Id‘𝑆)
6 eqid 2729 . 2 (Id‘𝑇) = (Id‘𝑇)
7 eqid 2729 . 2 (comp‘𝑆) = (comp‘𝑆)
8 eqid 2729 . 2 (comp‘𝑇) = (comp‘𝑇)
9 swapfid.s . . 3 𝑆 = (𝐶 ×c 𝐷)
10 swapfid.c . . 3 (𝜑𝐶 ∈ Cat)
11 swapfid.d . . 3 (𝜑𝐷 ∈ Cat)
129, 10, 11xpccat 18127 . 2 (𝜑𝑆 ∈ Cat)
13 swapfid.t . . 3 𝑇 = (𝐷 ×c 𝐶)
1413, 11, 10xpccat 18127 . 2 (𝜑𝑇 ∈ Cat)
15 swapfid.o . . . 4 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
1615, 9, 13, 10, 11, 1, 2swapf1f1o 49237 . . 3 (𝜑𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
17 f1of 6782 . . 3 (𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝑂:(Base‘𝑆)⟶(Base‘𝑇))
1816, 17syl 17 . 2 (𝜑𝑂:(Base‘𝑆)⟶(Base‘𝑇))
1910, 11, 9, 1, 15swapf2fn 49230 . 2 (𝜑𝑃 Fn ((Base‘𝑆) × (Base‘𝑆)))
2015adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
21 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
22 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2320, 9, 13, 3, 4, 1, 21, 22swapf2f1oa 49239 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
24 f1of 6782 . . 3 ((𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
2523, 24syl 17 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
2610adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐶 ∈ Cat)
2711adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐷 ∈ Cat)
2815adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
29 simpr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
3026, 27, 9, 13, 28, 1, 29, 5, 6swapfida 49242 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((𝑥𝑃𝑥)‘((Id‘𝑆)‘𝑥)) = ((Id‘𝑇)‘(𝑂𝑥)))
31103ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐶 ∈ Cat)
32113ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐷 ∈ Cat)
33153ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
34 simp21 1207 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑥 ∈ (Base‘𝑆))
35 simp22 1208 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑦 ∈ (Base‘𝑆))
36 simp23 1209 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑧 ∈ (Base‘𝑆))
37 simp3l 1202 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦))
38 simp3r 1203 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))
3931, 32, 9, 13, 33, 1, 34, 35, 36, 3, 37, 38, 7, 8swapfcoa 49243 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑆)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(⟨(𝑂𝑥), (𝑂𝑦)⟩(comp‘𝑇)(𝑂𝑧))((𝑥𝑃𝑦)‘𝑚)))
401, 2, 3, 4, 5, 6, 7, 8, 12, 14, 18, 19, 25, 30, 39isfuncd 17803 1 (𝜑𝑂(𝑆 Func 𝑇)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602   Func cfunc 17792   ×c cxpc 18105   swapF cswapf 49221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-func 17796  df-xpc 18109  df-swapf 49222
This theorem is referenced by:  swapfffth  49245  swapffunca  49246
  Copyright terms: Public domain W3C validator