Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapffunc Structured version   Visualization version   GIF version

Theorem swapffunc 48961
Description: The swap functor is a functor. (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapfid.c (𝜑𝐶 ∈ Cat)
swapfid.d (𝜑𝐷 ∈ Cat)
swapfid.s 𝑆 = (𝐶 ×c 𝐷)
swapfid.t 𝑇 = (𝐷 ×c 𝐶)
swapfid.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapffunc (𝜑𝑂(𝑆 Func 𝑇)𝑃)

Proof of Theorem swapffunc
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2736 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2736 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
4 eqid 2736 . 2 (Hom ‘𝑇) = (Hom ‘𝑇)
5 eqid 2736 . 2 (Id‘𝑆) = (Id‘𝑆)
6 eqid 2736 . 2 (Id‘𝑇) = (Id‘𝑇)
7 eqid 2736 . 2 (comp‘𝑆) = (comp‘𝑆)
8 eqid 2736 . 2 (comp‘𝑇) = (comp‘𝑇)
9 swapfid.s . . 3 𝑆 = (𝐶 ×c 𝐷)
10 swapfid.c . . 3 (𝜑𝐶 ∈ Cat)
11 swapfid.d . . 3 (𝜑𝐷 ∈ Cat)
129, 10, 11xpccat 18231 . 2 (𝜑𝑆 ∈ Cat)
13 swapfid.t . . 3 𝑇 = (𝐷 ×c 𝐶)
1413, 11, 10xpccat 18231 . 2 (𝜑𝑇 ∈ Cat)
15 swapfid.o . . . 4 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
1615, 9, 13, 10, 11, 1, 2swapf1f1o 48954 . . 3 (𝜑𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
17 f1of 6846 . . 3 (𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝑂:(Base‘𝑆)⟶(Base‘𝑇))
1816, 17syl 17 . 2 (𝜑𝑂:(Base‘𝑆)⟶(Base‘𝑇))
1910, 11, 9, 1, 15swapf2fn 48947 . 2 (𝜑𝑃 Fn ((Base‘𝑆) × (Base‘𝑆)))
2015adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
21 simprl 771 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
22 simprr 773 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2320, 9, 13, 3, 4, 1, 21, 22swapf2f1oa 48956 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
24 f1of 6846 . . 3 ((𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
2523, 24syl 17 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
2610adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐶 ∈ Cat)
2711adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐷 ∈ Cat)
2815adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
29 simpr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
3026, 27, 9, 13, 28, 1, 29, 5, 6swapfida 48959 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((𝑥𝑃𝑥)‘((Id‘𝑆)‘𝑥)) = ((Id‘𝑇)‘(𝑂𝑥)))
31103ad2ant1 1134 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐶 ∈ Cat)
32113ad2ant1 1134 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐷 ∈ Cat)
33153ad2ant1 1134 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
34 simp21 1207 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑥 ∈ (Base‘𝑆))
35 simp22 1208 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑦 ∈ (Base‘𝑆))
36 simp23 1209 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑧 ∈ (Base‘𝑆))
37 simp3l 1202 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦))
38 simp3r 1203 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))
3931, 32, 9, 13, 33, 1, 34, 35, 36, 3, 37, 38, 7, 8swapfcoa 48960 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑆)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(⟨(𝑂𝑥), (𝑂𝑦)⟩(comp‘𝑇)(𝑂𝑧))((𝑥𝑃𝑦)‘𝑚)))
401, 2, 3, 4, 5, 6, 7, 8, 12, 14, 18, 19, 25, 30, 39isfuncd 17906 1 (𝜑𝑂(𝑆 Func 𝑇)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4630   class class class wbr 5141  wf 6555  1-1-ontowf1o 6558  cfv 6559  (class class class)co 7429  Basecbs 17243  Hom chom 17304  compcco 17305  Catccat 17703  Idccid 17704   Func cfunc 17895   ×c cxpc 18209  swapFcswapf 48938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-cat 17707  df-cid 17708  df-func 17899  df-xpc 18213  df-swapf 48939
This theorem is referenced by:  swapfffth  48962  swapffunca  48963
  Copyright terms: Public domain W3C validator