Step | Hyp | Ref
| Expression |
1 | | eqid 2736 |
. 2
⊢
(Base‘𝑆) =
(Base‘𝑆) |
2 | | eqid 2736 |
. 2
⊢
(Base‘𝑇) =
(Base‘𝑇) |
3 | | eqid 2736 |
. 2
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
4 | | eqid 2736 |
. 2
⊢ (Hom
‘𝑇) = (Hom
‘𝑇) |
5 | | eqid 2736 |
. 2
⊢
(Id‘𝑆) =
(Id‘𝑆) |
6 | | eqid 2736 |
. 2
⊢
(Id‘𝑇) =
(Id‘𝑇) |
7 | | eqid 2736 |
. 2
⊢
(comp‘𝑆) =
(comp‘𝑆) |
8 | | eqid 2736 |
. 2
⊢
(comp‘𝑇) =
(comp‘𝑇) |
9 | | swapfid.s |
. . 3
⊢ 𝑆 = (𝐶 ×c 𝐷) |
10 | | swapfid.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
11 | | swapfid.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
12 | 9, 10, 11 | xpccat 18231 |
. 2
⊢ (𝜑 → 𝑆 ∈ Cat) |
13 | | swapfid.t |
. . 3
⊢ 𝑇 = (𝐷 ×c 𝐶) |
14 | 13, 11, 10 | xpccat 18231 |
. 2
⊢ (𝜑 → 𝑇 ∈ Cat) |
15 | | swapfid.o |
. . . 4
⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
16 | 15, 9, 13, 10, 11, 1, 2 | swapf1f1o 48954 |
. . 3
⊢ (𝜑 → 𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) |
17 | | f1of 6846 |
. . 3
⊢ (𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝑂:(Base‘𝑆)⟶(Base‘𝑇)) |
18 | 16, 17 | syl 17 |
. 2
⊢ (𝜑 → 𝑂:(Base‘𝑆)⟶(Base‘𝑇)) |
19 | 10, 11, 9, 1, 15 | swapf2fn 48947 |
. 2
⊢ (𝜑 → 𝑃 Fn ((Base‘𝑆) × (Base‘𝑆))) |
20 | 15 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
21 | | simprl 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) |
22 | | simprr 773 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) |
23 | 20, 9, 13, 3, 4, 1,
21, 22 | swapf2f1oa 48956 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦))) |
24 | | f1of 6846 |
. . 3
⊢ ((𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦)) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦))) |
25 | 23, 24 | syl 17 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂‘𝑥)(Hom ‘𝑇)(𝑂‘𝑦))) |
26 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐶 ∈ Cat) |
27 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝐷 ∈ Cat) |
28 | 15 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
29 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆)) |
30 | 26, 27, 9, 13, 28, 1, 29, 5, 6 | swapfida 48959 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥𝑃𝑥)‘((Id‘𝑆)‘𝑥)) = ((Id‘𝑇)‘(𝑂‘𝑥))) |
31 | 10 | 3ad2ant1 1134 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐶 ∈ Cat) |
32 | 11 | 3ad2ant1 1134 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐷 ∈ Cat) |
33 | 15 | 3ad2ant1 1134 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
34 | | simp21 1207 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑥 ∈ (Base‘𝑆)) |
35 | | simp22 1208 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑦 ∈ (Base‘𝑆)) |
36 | | simp23 1209 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑧 ∈ (Base‘𝑆)) |
37 | | simp3l 1202 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦)) |
38 | | simp3r 1203 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧)) |
39 | 31, 32, 9, 13, 33, 1, 34, 35, 36, 3, 37, 38, 7, 8 | swapfcoa 48960 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑆)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(〈(𝑂‘𝑥), (𝑂‘𝑦)〉(comp‘𝑇)(𝑂‘𝑧))((𝑥𝑃𝑦)‘𝑚))) |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 18, 19, 25, 30, 39 | isfuncd 17906 |
1
⊢ (𝜑 → 𝑂(𝑆 Func 𝑇)𝑃) |