Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapffunc Structured version   Visualization version   GIF version

Theorem swapffunc 49033
Description: The swap functor is a functor. (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapfid.c (𝜑𝐶 ∈ Cat)
swapfid.d (𝜑𝐷 ∈ Cat)
swapfid.s 𝑆 = (𝐶 ×c 𝐷)
swapfid.t 𝑇 = (𝐷 ×c 𝐶)
swapfid.o (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapffunc (𝜑𝑂(𝑆 Func 𝑇)𝑃)

Proof of Theorem swapffunc
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2734 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2734 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
4 eqid 2734 . 2 (Hom ‘𝑇) = (Hom ‘𝑇)
5 eqid 2734 . 2 (Id‘𝑆) = (Id‘𝑆)
6 eqid 2734 . 2 (Id‘𝑇) = (Id‘𝑇)
7 eqid 2734 . 2 (comp‘𝑆) = (comp‘𝑆)
8 eqid 2734 . 2 (comp‘𝑇) = (comp‘𝑇)
9 swapfid.s . . 3 𝑆 = (𝐶 ×c 𝐷)
10 swapfid.c . . 3 (𝜑𝐶 ∈ Cat)
11 swapfid.d . . 3 (𝜑𝐷 ∈ Cat)
129, 10, 11xpccat 18206 . 2 (𝜑𝑆 ∈ Cat)
13 swapfid.t . . 3 𝑇 = (𝐷 ×c 𝐶)
1413, 11, 10xpccat 18206 . 2 (𝜑𝑇 ∈ Cat)
15 swapfid.o . . . 4 (𝜑 → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
1615, 9, 13, 10, 11, 1, 2swapf1f1o 49026 . . 3 (𝜑𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇))
17 f1of 6828 . . 3 (𝑂:(Base‘𝑆)–1-1-onto→(Base‘𝑇) → 𝑂:(Base‘𝑆)⟶(Base‘𝑇))
1816, 17syl 17 . 2 (𝜑𝑂:(Base‘𝑆)⟶(Base‘𝑇))
1910, 11, 9, 1, 15swapf2fn 49019 . 2 (𝜑𝑃 Fn ((Base‘𝑆) × (Base‘𝑆)))
2015adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
21 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
22 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2320, 9, 13, 3, 4, 1, 21, 22swapf2f1oa 49028 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
24 f1of 6828 . . 3 ((𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)–1-1-onto→((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
2523, 24syl 17 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥𝑃𝑦):(𝑥(Hom ‘𝑆)𝑦)⟶((𝑂𝑥)(Hom ‘𝑇)(𝑂𝑦)))
2610adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐶 ∈ Cat)
2711adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝐷 ∈ Cat)
2815adantr 480 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
29 simpr 484 . . 3 ((𝜑𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑆))
3026, 27, 9, 13, 28, 1, 29, 5, 6swapfida 49031 . 2 ((𝜑𝑥 ∈ (Base‘𝑆)) → ((𝑥𝑃𝑥)‘((Id‘𝑆)‘𝑥)) = ((Id‘𝑇)‘(𝑂𝑥)))
31103ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐶 ∈ Cat)
32113ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝐷 ∈ Cat)
33153ad2ant1 1133 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → (𝐶swapF𝐷) = ⟨𝑂, 𝑃⟩)
34 simp21 1206 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑥 ∈ (Base‘𝑆))
35 simp22 1207 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑦 ∈ (Base‘𝑆))
36 simp23 1208 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑧 ∈ (Base‘𝑆))
37 simp3l 1201 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦))
38 simp3r 1202 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))
3931, 32, 9, 13, 33, 1, 34, 35, 36, 3, 37, 38, 7, 8swapfcoa 49032 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆)) ∧ (𝑚 ∈ (𝑥(Hom ‘𝑆)𝑦) ∧ 𝑛 ∈ (𝑦(Hom ‘𝑆)𝑧))) → ((𝑥𝑃𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑆)𝑧)𝑚)) = (((𝑦𝑃𝑧)‘𝑛)(⟨(𝑂𝑥), (𝑂𝑦)⟩(comp‘𝑇)(𝑂𝑧))((𝑥𝑃𝑦)‘𝑚)))
401, 2, 3, 4, 5, 6, 7, 8, 12, 14, 18, 19, 25, 30, 39isfuncd 17882 1 (𝜑𝑂(𝑆 Func 𝑇)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cop 4612   class class class wbr 5123  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Basecbs 17230  Hom chom 17285  compcco 17286  Catccat 17679  Idccid 17680   Func cfunc 17871   ×c cxpc 18184  swapFcswapf 49010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-xpc 18188  df-swapf 49011
This theorem is referenced by:  swapfffth  49034  swapffunca  49035
  Copyright terms: Public domain W3C validator