Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2fval Structured version   Visualization version   GIF version

Theorem swapf2fval 49236
Description: The morphism part of the swap functor. See also swapf2fvala 49235. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf2fvala.h (𝜑𝐻 = (Hom ‘𝑆))
swapf2fval.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf2fval (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
Distinct variable groups:   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝐷,𝑣   𝑓,𝐻,𝑢,𝑣   𝑢,𝑆,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑃(𝑣,𝑢,𝑓)   𝑆(𝑓)   𝑈(𝑣,𝑢,𝑓)   𝑂(𝑣,𝑢,𝑓)   𝑉(𝑣,𝑢,𝑓)

Proof of Theorem swapf2fval
StepHypRef Expression
1 swapf2fval.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
21fveq2d 6864 . 2 (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (2nd ‘⟨𝑂, 𝑃⟩))
3 swapfval.c . . 3 (𝜑𝐶𝑈)
4 swapfval.d . . 3 (𝜑𝐷𝑉)
5 swapf2fvala.s . . 3 𝑆 = (𝐶 ×c 𝐷)
6 swapf2fvala.b . . 3 𝐵 = (Base‘𝑆)
7 swapf2fvala.h . . 3 (𝜑𝐻 = (Hom ‘𝑆))
83, 4, 5, 6, 7swapf2fvala 49235 . 2 (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
93, 4swapfelvv 49234 . . . 4 (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))
101, 9eqeltrrd 2830 . . 3 (𝜑 → ⟨𝑂, 𝑃⟩ ∈ (V × V))
11 opelxp 5676 . . . 4 (⟨𝑂, 𝑃⟩ ∈ (V × V) ↔ (𝑂 ∈ V ∧ 𝑃 ∈ V))
1211biimpi 216 . . 3 (⟨𝑂, 𝑃⟩ ∈ (V × V) → (𝑂 ∈ V ∧ 𝑃 ∈ V))
13 op2ndg 7983 . . 3 ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (2nd ‘⟨𝑂, 𝑃⟩) = 𝑃)
1410, 12, 133syl 18 . 2 (𝜑 → (2nd ‘⟨𝑂, 𝑃⟩) = 𝑃)
152, 8, 143eqtr3rd 2774 1 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4591  cop 4597   cuni 4873  cmpt 5190   × cxp 5638  ccnv 5639  cfv 6513  (class class class)co 7389  cmpo 7391  2nd c2nd 7969  Basecbs 17185  Hom chom 17237   ×c cxpc 18135   swapF cswapf 49230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-swapf 49231
This theorem is referenced by:  swapf2fn  49239  swapf2vala  49241
  Copyright terms: Public domain W3C validator