Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2fval Structured version   Visualization version   GIF version

Theorem swapf2fval 49426
Description: The morphism part of the swap functor. See also swapf2fvala 49425. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf2fvala.h (𝜑𝐻 = (Hom ‘𝑆))
swapf2fval.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
Assertion
Ref Expression
swapf2fval (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
Distinct variable groups:   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝐷,𝑣   𝑓,𝐻,𝑢,𝑣   𝑢,𝑆,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑃(𝑣,𝑢,𝑓)   𝑆(𝑓)   𝑈(𝑣,𝑢,𝑓)   𝑂(𝑣,𝑢,𝑓)   𝑉(𝑣,𝑢,𝑓)

Proof of Theorem swapf2fval
StepHypRef Expression
1 swapf2fval.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
21fveq2d 6835 . 2 (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (2nd ‘⟨𝑂, 𝑃⟩))
3 swapfval.c . . 3 (𝜑𝐶𝑈)
4 swapfval.d . . 3 (𝜑𝐷𝑉)
5 swapf2fvala.s . . 3 𝑆 = (𝐶 ×c 𝐷)
6 swapf2fvala.b . . 3 𝐵 = (Base‘𝑆)
7 swapf2fvala.h . . 3 (𝜑𝐻 = (Hom ‘𝑆))
83, 4, 5, 6, 7swapf2fvala 49425 . 2 (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
93, 4swapfelvv 49424 . . . 4 (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))
101, 9eqeltrrd 2834 . . 3 (𝜑 → ⟨𝑂, 𝑃⟩ ∈ (V × V))
11 opelxp 5657 . . . 4 (⟨𝑂, 𝑃⟩ ∈ (V × V) ↔ (𝑂 ∈ V ∧ 𝑃 ∈ V))
1211biimpi 216 . . 3 (⟨𝑂, 𝑃⟩ ∈ (V × V) → (𝑂 ∈ V ∧ 𝑃 ∈ V))
13 op2ndg 7943 . . 3 ((𝑂 ∈ V ∧ 𝑃 ∈ V) → (2nd ‘⟨𝑂, 𝑃⟩) = 𝑃)
1410, 12, 133syl 18 . 2 (𝜑 → (2nd ‘⟨𝑂, 𝑃⟩) = 𝑃)
152, 8, 143eqtr3rd 2777 1 (𝜑𝑃 = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  cfv 6489  (class class class)co 7355  cmpo 7357  2nd c2nd 7929  Basecbs 17127  Hom chom 17179   ×c cxpc 18082   swapF cswapf 49420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-swapf 49421
This theorem is referenced by:  swapf2fn  49429  swapf2vala  49431
  Copyright terms: Public domain W3C validator