![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > perpdrag | Structured version Visualization version GIF version |
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
perpdrag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
perpdrag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
perpdrag.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
perpdrag.4 | ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
Ref | Expression |
---|---|
perpdrag | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | colperpex.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | ad2antrr 716 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐺 ∈ TarskiG) |
7 | perpdrag.4 | . . . . . 6 ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) | |
8 | 7 | ad2antrr 716 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
9 | 4, 6, 8 | perpln1 26065 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷 ∈ ran 𝐿) |
10 | perpdrag.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
11 | 10 | ad2antrr 716 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ∈ 𝐷) |
12 | 1, 4, 3, 6, 9, 11 | tglnpt 25904 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ∈ 𝑃) |
13 | simplr 759 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝑥 ∈ 𝐷) | |
14 | 1, 4, 3, 6, 9, 13 | tglnpt 25904 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝑥 ∈ 𝑃) |
15 | perpdrag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
16 | 15 | ad2antrr 716 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐵 ∈ 𝐷) |
17 | simpr 479 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ≠ 𝑥) | |
18 | 1, 3, 4, 6, 12, 14, 17, 17, 9, 11, 13 | tglinethru 25991 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷 = (𝐴𝐿𝑥)) |
19 | 16, 18 | eleqtrd 2861 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐵 ∈ (𝐴𝐿𝑥)) |
20 | perpdrag.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
21 | 20 | ad2antrr 716 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐶 ∈ 𝑃) |
22 | 18, 8 | eqbrtrrd 4912 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → (𝐴𝐿𝑥)(⟂G‘𝐺)(𝐵𝐿𝐶)) |
23 | 1, 2, 3, 4, 6, 12, 14, 19, 21, 22 | perprag 26078 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
24 | 4, 5, 7 | perpln1 26065 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
25 | 1, 3, 4, 5, 24, 10 | tglnpt2 25996 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 𝐴 ≠ 𝑥) |
26 | 23, 25 | r19.29a 3264 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 〈“cs3 13997 Basecbs 16259 distcds 16351 TarskiGcstrkg 25785 Itvcitv 25791 LineGclng 25792 ∟Gcrag 26048 ⟂Gcperpg 26050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-xnn0 11719 df-z 11733 df-uz 11997 df-fz 12648 df-fzo 12789 df-hash 13440 df-word 13604 df-concat 13665 df-s1 13690 df-s2 14003 df-s3 14004 df-trkgc 25803 df-trkgb 25804 df-trkgcb 25805 df-trkg 25808 df-cgrg 25866 df-mir 26008 df-rag 26049 df-perpg 26051 |
This theorem is referenced by: lmiisolem 26148 |
Copyright terms: Public domain | W3C validator |