| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > perpdrag | Structured version Visualization version GIF version | ||
| Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| perpdrag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| perpdrag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| perpdrag.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| perpdrag.4 | ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
| Ref | Expression |
|---|---|
| perpdrag | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | colperpex.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐺 ∈ TarskiG) |
| 7 | perpdrag.4 | . . . . . 6 ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) | |
| 8 | 7 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
| 9 | 4, 6, 8 | perpln1 28686 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷 ∈ ran 𝐿) |
| 10 | perpdrag.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 11 | 10 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ∈ 𝐷) |
| 12 | 1, 4, 3, 6, 9, 11 | tglnpt 28525 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ∈ 𝑃) |
| 13 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝑥 ∈ 𝐷) | |
| 14 | 1, 4, 3, 6, 9, 13 | tglnpt 28525 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝑥 ∈ 𝑃) |
| 15 | perpdrag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 16 | 15 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐵 ∈ 𝐷) |
| 17 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ≠ 𝑥) | |
| 18 | 1, 3, 4, 6, 12, 14, 17, 17, 9, 11, 13 | tglinethru 28612 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷 = (𝐴𝐿𝑥)) |
| 19 | 16, 18 | eleqtrd 2833 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐵 ∈ (𝐴𝐿𝑥)) |
| 20 | perpdrag.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 21 | 20 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐶 ∈ 𝑃) |
| 22 | 18, 8 | eqbrtrrd 5115 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → (𝐴𝐿𝑥)(⟂G‘𝐺)(𝐵𝐿𝐶)) |
| 23 | 1, 2, 3, 4, 6, 12, 14, 19, 21, 22 | perprag 28702 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 24 | 4, 5, 7 | perpln1 28686 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| 25 | 1, 3, 4, 5, 24, 10 | tglnpt2 28617 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 𝐴 ≠ 𝑥) |
| 26 | 23, 25 | r19.29a 3140 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 〈“cs3 14746 Basecbs 17117 distcds 17167 TarskiGcstrkg 28403 Itvcitv 28409 LineGclng 28410 ∟Gcrag 28669 ⟂Gcperpg 28671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-hash 14235 df-word 14418 df-concat 14475 df-s1 14501 df-s2 14752 df-s3 14753 df-trkgc 28424 df-trkgb 28425 df-trkgcb 28426 df-trkg 28429 df-cgrg 28487 df-mir 28629 df-rag 28670 df-perpg 28672 |
| This theorem is referenced by: lmiisolem 28772 |
| Copyright terms: Public domain | W3C validator |