Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > perpdrag | Structured version Visualization version GIF version |
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
perpdrag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
perpdrag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
perpdrag.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
perpdrag.4 | ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
Ref | Expression |
---|---|
perpdrag | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | colperpex.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | colperpex.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | colperpex.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | colperpex.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | ad2antrr 723 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐺 ∈ TarskiG) |
7 | perpdrag.4 | . . . . . 6 ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) | |
8 | 7 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
9 | 4, 6, 8 | perpln1 27069 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷 ∈ ran 𝐿) |
10 | perpdrag.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
11 | 10 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ∈ 𝐷) |
12 | 1, 4, 3, 6, 9, 11 | tglnpt 26908 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ∈ 𝑃) |
13 | simplr 766 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝑥 ∈ 𝐷) | |
14 | 1, 4, 3, 6, 9, 13 | tglnpt 26908 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝑥 ∈ 𝑃) |
15 | perpdrag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
16 | 15 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐵 ∈ 𝐷) |
17 | simpr 485 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐴 ≠ 𝑥) | |
18 | 1, 3, 4, 6, 12, 14, 17, 17, 9, 11, 13 | tglinethru 26995 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐷 = (𝐴𝐿𝑥)) |
19 | 16, 18 | eleqtrd 2841 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐵 ∈ (𝐴𝐿𝑥)) |
20 | perpdrag.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
21 | 20 | ad2antrr 723 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 𝐶 ∈ 𝑃) |
22 | 18, 8 | eqbrtrrd 5100 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → (𝐴𝐿𝑥)(⟂G‘𝐺)(𝐵𝐿𝐶)) |
23 | 1, 2, 3, 4, 6, 12, 14, 19, 21, 22 | perprag 27085 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝐴 ≠ 𝑥) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
24 | 4, 5, 7 | perpln1 27069 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
25 | 1, 3, 4, 5, 24, 10 | tglnpt2 27000 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 𝐴 ≠ 𝑥) |
26 | 23, 25 | r19.29a 3217 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5076 ‘cfv 6435 (class class class)co 7277 〈“cs3 14553 Basecbs 16910 distcds 16969 TarskiGcstrkg 26786 Itvcitv 26792 LineGclng 26793 ∟Gcrag 27052 ⟂Gcperpg 27054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-oadd 8299 df-er 8496 df-map 8615 df-pm 8616 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-dju 9657 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-n0 12232 df-xnn0 12304 df-z 12318 df-uz 12581 df-fz 13238 df-fzo 13381 df-hash 14043 df-word 14216 df-concat 14272 df-s1 14299 df-s2 14559 df-s3 14560 df-trkgc 26807 df-trkgb 26808 df-trkgcb 26809 df-trkg 26812 df-cgrg 26870 df-mir 27012 df-rag 27053 df-perpg 27055 |
This theorem is referenced by: lmiisolem 27155 |
Copyright terms: Public domain | W3C validator |