![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > perpdrag | Structured version Visualization version GIF version |
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) |
Ref | Expression |
---|---|
colperpex.p | β’ π = (BaseβπΊ) |
colperpex.d | β’ β = (distβπΊ) |
colperpex.i | β’ πΌ = (ItvβπΊ) |
colperpex.l | β’ πΏ = (LineGβπΊ) |
colperpex.g | β’ (π β πΊ β TarskiG) |
perpdrag.1 | β’ (π β π΄ β π·) |
perpdrag.2 | β’ (π β π΅ β π·) |
perpdrag.3 | β’ (π β πΆ β π) |
perpdrag.4 | β’ (π β π·(βGβπΊ)(π΅πΏπΆ)) |
Ref | Expression |
---|---|
perpdrag | β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | . . 3 β’ π = (BaseβπΊ) | |
2 | colperpex.d | . . 3 β’ β = (distβπΊ) | |
3 | colperpex.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | colperpex.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | colperpex.g | . . . 4 β’ (π β πΊ β TarskiG) | |
6 | 5 | ad2antrr 722 | . . 3 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β πΊ β TarskiG) |
7 | perpdrag.4 | . . . . . 6 β’ (π β π·(βGβπΊ)(π΅πΏπΆ)) | |
8 | 7 | ad2antrr 722 | . . . . 5 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π·(βGβπΊ)(π΅πΏπΆ)) |
9 | 4, 6, 8 | perpln1 28228 | . . . 4 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π· β ran πΏ) |
10 | perpdrag.1 | . . . . 5 β’ (π β π΄ β π·) | |
11 | 10 | ad2antrr 722 | . . . 4 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π΄ β π·) |
12 | 1, 4, 3, 6, 9, 11 | tglnpt 28067 | . . 3 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π΄ β π) |
13 | simplr 765 | . . . 4 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π₯ β π·) | |
14 | 1, 4, 3, 6, 9, 13 | tglnpt 28067 | . . 3 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π₯ β π) |
15 | perpdrag.2 | . . . . 5 β’ (π β π΅ β π·) | |
16 | 15 | ad2antrr 722 | . . . 4 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π΅ β π·) |
17 | simpr 483 | . . . . 5 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π΄ β π₯) | |
18 | 1, 3, 4, 6, 12, 14, 17, 17, 9, 11, 13 | tglinethru 28154 | . . . 4 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π· = (π΄πΏπ₯)) |
19 | 16, 18 | eleqtrd 2833 | . . 3 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β π΅ β (π΄πΏπ₯)) |
20 | perpdrag.3 | . . . 4 β’ (π β πΆ β π) | |
21 | 20 | ad2antrr 722 | . . 3 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β πΆ β π) |
22 | 18, 8 | eqbrtrrd 5171 | . . 3 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β (π΄πΏπ₯)(βGβπΊ)(π΅πΏπΆ)) |
23 | 1, 2, 3, 4, 6, 12, 14, 19, 21, 22 | perprag 28244 | . 2 β’ (((π β§ π₯ β π·) β§ π΄ β π₯) β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
24 | 4, 5, 7 | perpln1 28228 | . . 3 β’ (π β π· β ran πΏ) |
25 | 1, 3, 4, 5, 24, 10 | tglnpt2 28159 | . 2 β’ (π β βπ₯ β π· π΄ β π₯) |
26 | 23, 25 | r19.29a 3160 | 1 β’ (π β β¨βπ΄π΅πΆββ© β (βGβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5147 βcfv 6542 (class class class)co 7411 β¨βcs3 14797 Basecbs 17148 distcds 17210 TarskiGcstrkg 27945 Itvcitv 27951 LineGclng 27952 βGcrag 28211 βGcperpg 28213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-trkgc 27966 df-trkgb 27967 df-trkgcb 27968 df-trkg 27971 df-cgrg 28029 df-mir 28171 df-rag 28212 df-perpg 28214 |
This theorem is referenced by: lmiisolem 28314 |
Copyright terms: Public domain | W3C validator |