Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpdrag Structured version   Visualization version   GIF version

Theorem perpdrag 26080
 Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
perpdrag.1 (𝜑𝐴𝐷)
perpdrag.2 (𝜑𝐵𝐷)
perpdrag.3 (𝜑𝐶𝑃)
perpdrag.4 (𝜑𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))
Assertion
Ref Expression
perpdrag (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))

Proof of Theorem perpdrag
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . 3 𝑃 = (Base‘𝐺)
2 colperpex.d . . 3 = (dist‘𝐺)
3 colperpex.i . . 3 𝐼 = (Itv‘𝐺)
4 colperpex.l . . 3 𝐿 = (LineG‘𝐺)
5 colperpex.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 716 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐺 ∈ TarskiG)
7 perpdrag.4 . . . . . 6 (𝜑𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))
87ad2antrr 716 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))
94, 6, 8perpln1 26065 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 ∈ ran 𝐿)
10 perpdrag.1 . . . . 5 (𝜑𝐴𝐷)
1110ad2antrr 716 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝐷)
121, 4, 3, 6, 9, 11tglnpt 25904 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑃)
13 simplr 759 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝐷)
141, 4, 3, 6, 9, 13tglnpt 25904 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝑥𝑃)
15 perpdrag.2 . . . . 5 (𝜑𝐵𝐷)
1615ad2antrr 716 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐵𝐷)
17 simpr 479 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐴𝑥)
181, 3, 4, 6, 12, 14, 17, 17, 9, 11, 13tglinethru 25991 . . . 4 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐷 = (𝐴𝐿𝑥))
1916, 18eleqtrd 2861 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐵 ∈ (𝐴𝐿𝑥))
20 perpdrag.3 . . . 4 (𝜑𝐶𝑃)
2120ad2antrr 716 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → 𝐶𝑃)
2218, 8eqbrtrrd 4912 . . 3 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → (𝐴𝐿𝑥)(⟂G‘𝐺)(𝐵𝐿𝐶))
231, 2, 3, 4, 6, 12, 14, 19, 21, 22perprag 26078 . 2 (((𝜑𝑥𝐷) ∧ 𝐴𝑥) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
244, 5, 7perpln1 26065 . . 3 (𝜑𝐷 ∈ ran 𝐿)
251, 3, 4, 5, 24, 10tglnpt2 25996 . 2 (𝜑 → ∃𝑥𝐷 𝐴𝑥)
2623, 25r19.29a 3264 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107   ≠ wne 2969   class class class wbr 4888  ‘cfv 6137  (class class class)co 6924  ⟨“cs3 13997  Basecbs 16259  distcds 16351  TarskiGcstrkg 25785  Itvcitv 25791  LineGclng 25792  ∟Gcrag 26048  ⟂Gcperpg 26050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-xnn0 11719  df-z 11733  df-uz 11997  df-fz 12648  df-fzo 12789  df-hash 13440  df-word 13604  df-concat 13665  df-s1 13690  df-s2 14003  df-s3 14004  df-trkgc 25803  df-trkgb 25804  df-trkgcb 25805  df-trkg 25808  df-cgrg 25866  df-mir 26008  df-rag 26049  df-perpg 26051 This theorem is referenced by:  lmiisolem  26148
 Copyright terms: Public domain W3C validator