MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopn Structured version   Visualization version   GIF version

Theorem topontopn 22803
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 toponuni 22777 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
2 eqimss2 4003 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
4 sspwuni 5059 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
53, 4sylibr 234 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
6 tsettps.a . . 3 𝐴 = (Base‘𝐾)
7 tsettps.j . . 3 𝐽 = (TopSet‘𝐾)
86, 7topnid 17374 . 2 (𝐽 ⊆ 𝒫 𝐴𝐽 = (TopOpen‘𝐾))
95, 8syl 17 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867  cfv 6499  Basecbs 17155  TopSetcts 17202  TopOpenctopn 17360  TopOnctopon 22773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-rest 17361  df-topn 17362  df-topon 22774
This theorem is referenced by:  tsettps  22804  xrstopn  23071  cnfldms  24639  cnfldtopn  24645
  Copyright terms: Public domain W3C validator