Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topontopn | Structured version Visualization version GIF version |
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | ⊢ 𝐴 = (Base‘𝐾) |
tsettps.j | ⊢ 𝐽 = (TopSet‘𝐾) |
Ref | Expression |
---|---|
topontopn | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 21971 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = ∪ 𝐽) | |
2 | eqimss2 3974 | . . . 4 ⊢ (𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → ∪ 𝐽 ⊆ 𝐴) |
4 | sspwuni 5025 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 233 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴) |
6 | tsettps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
7 | tsettps.j | . . 3 ⊢ 𝐽 = (TopSet‘𝐾) | |
8 | 6, 7 | topnid 17063 | . 2 ⊢ (𝐽 ⊆ 𝒫 𝐴 → 𝐽 = (TopOpen‘𝐾)) |
9 | 5, 8 | syl 17 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Basecbs 16840 TopSetcts 16894 TopOpenctopn 17049 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-rest 17050 df-topn 17051 df-topon 21968 |
This theorem is referenced by: tsettps 21998 xrstopn 22267 cnfldms 23845 cnfldtopn 23851 |
Copyright terms: Public domain | W3C validator |