![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topontopn | Structured version Visualization version GIF version |
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | β’ π΄ = (BaseβπΎ) |
tsettps.j | β’ π½ = (TopSetβπΎ) |
Ref | Expression |
---|---|
topontopn | β’ (π½ β (TopOnβπ΄) β π½ = (TopOpenβπΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 22407 | . . . 4 β’ (π½ β (TopOnβπ΄) β π΄ = βͺ π½) | |
2 | eqimss2 4040 | . . . 4 β’ (π΄ = βͺ π½ β βͺ π½ β π΄) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π½ β (TopOnβπ΄) β βͺ π½ β π΄) |
4 | sspwuni 5102 | . . 3 β’ (π½ β π« π΄ β βͺ π½ β π΄) | |
5 | 3, 4 | sylibr 233 | . 2 β’ (π½ β (TopOnβπ΄) β π½ β π« π΄) |
6 | tsettps.a | . . 3 β’ π΄ = (BaseβπΎ) | |
7 | tsettps.j | . . 3 β’ π½ = (TopSetβπΎ) | |
8 | 6, 7 | topnid 17377 | . 2 β’ (π½ β π« π΄ β π½ = (TopOpenβπΎ)) |
9 | 5, 8 | syl 17 | 1 β’ (π½ β (TopOnβπ΄) β π½ = (TopOpenβπΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 π« cpw 4601 βͺ cuni 4907 βcfv 6540 Basecbs 17140 TopSetcts 17199 TopOpenctopn 17363 TopOnctopon 22403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-rest 17364 df-topn 17365 df-topon 22404 |
This theorem is referenced by: tsettps 22434 xrstopn 22703 cnfldms 24283 cnfldtopn 24289 |
Copyright terms: Public domain | W3C validator |