MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopn Structured version   Visualization version   GIF version

Theorem topontopn 21997
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 toponuni 21971 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
2 eqimss2 3974 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
4 sspwuni 5025 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
53, 4sylibr 233 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
6 tsettps.a . . 3 𝐴 = (Base‘𝐾)
7 tsettps.j . . 3 𝐽 = (TopSet‘𝐾)
86, 7topnid 17063 . 2 (𝐽 ⊆ 𝒫 𝐴𝐽 = (TopOpen‘𝐾))
95, 8syl 17 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530   cuni 4836  cfv 6418  Basecbs 16840  TopSetcts 16894  TopOpenctopn 17049  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rest 17050  df-topn 17051  df-topon 21968
This theorem is referenced by:  tsettps  21998  xrstopn  22267  cnfldms  23845  cnfldtopn  23851
  Copyright terms: Public domain W3C validator