MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopn Structured version   Visualization version   GIF version

Theorem topontopn 22827
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 toponuni 22801 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
2 eqimss2 4006 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
4 sspwuni 5064 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
53, 4sylibr 234 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
6 tsettps.a . . 3 𝐴 = (Base‘𝐾)
7 tsettps.j . . 3 𝐽 = (TopSet‘𝐾)
86, 7topnid 17398 . 2 (𝐽 ⊆ 𝒫 𝐴𝐽 = (TopOpen‘𝐾))
95, 8syl 17 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563   cuni 4871  cfv 6511  Basecbs 17179  TopSetcts 17226  TopOpenctopn 17384  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-rest 17385  df-topn 17386  df-topon 22798
This theorem is referenced by:  tsettps  22828  xrstopn  23095  cnfldms  24663  cnfldtopn  24669
  Copyright terms: Public domain W3C validator