MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopn Structured version   Visualization version   GIF version

Theorem topontopn 22433
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Baseβ€˜πΎ)
tsettps.j 𝐽 = (TopSetβ€˜πΎ)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOnβ€˜π΄) β†’ 𝐽 = (TopOpenβ€˜πΎ))

Proof of Theorem topontopn
StepHypRef Expression
1 toponuni 22407 . . . 4 (𝐽 ∈ (TopOnβ€˜π΄) β†’ 𝐴 = βˆͺ 𝐽)
2 eqimss2 4040 . . . 4 (𝐴 = βˆͺ 𝐽 β†’ βˆͺ 𝐽 βŠ† 𝐴)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOnβ€˜π΄) β†’ βˆͺ 𝐽 βŠ† 𝐴)
4 sspwuni 5102 . . 3 (𝐽 βŠ† 𝒫 𝐴 ↔ βˆͺ 𝐽 βŠ† 𝐴)
53, 4sylibr 233 . 2 (𝐽 ∈ (TopOnβ€˜π΄) β†’ 𝐽 βŠ† 𝒫 𝐴)
6 tsettps.a . . 3 𝐴 = (Baseβ€˜πΎ)
7 tsettps.j . . 3 𝐽 = (TopSetβ€˜πΎ)
86, 7topnid 17377 . 2 (𝐽 βŠ† 𝒫 𝐴 β†’ 𝐽 = (TopOpenβ€˜πΎ))
95, 8syl 17 1 (𝐽 ∈ (TopOnβ€˜π΄) β†’ 𝐽 = (TopOpenβ€˜πΎ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  β€˜cfv 6540  Basecbs 17140  TopSetcts 17199  TopOpenctopn 17363  TopOnctopon 22403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-rest 17364  df-topn 17365  df-topon 22404
This theorem is referenced by:  tsettps  22434  xrstopn  22703  cnfldms  24283  cnfldtopn  24289
  Copyright terms: Public domain W3C validator