MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopn Structured version   Visualization version   GIF version

Theorem topontopn 21653
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
topontopn (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))

Proof of Theorem topontopn
StepHypRef Expression
1 toponuni 21627 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = 𝐽)
2 eqimss2 3951 . . . 4 (𝐴 = 𝐽 𝐽𝐴)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽𝐴)
4 sspwuni 4991 . . 3 (𝐽 ⊆ 𝒫 𝐴 𝐽𝐴)
53, 4sylibr 237 . 2 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ⊆ 𝒫 𝐴)
6 tsettps.a . . 3 𝐴 = (Base‘𝐾)
7 tsettps.j . . 3 𝐽 = (TopSet‘𝐾)
86, 7topnid 16780 . 2 (𝐽 ⊆ 𝒫 𝐴𝐽 = (TopOpen‘𝐾))
95, 8syl 17 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3860  𝒫 cpw 4497   cuni 4801  cfv 6340  Basecbs 16554  TopSetcts 16642  TopOpenctopn 16766  TopOnctopon 21623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-rest 16767  df-topn 16768  df-topon 21624
This theorem is referenced by:  tsettps  21654  xrstopn  21921  cnfldms  23490  cnfldtopn  23496
  Copyright terms: Public domain W3C validator