Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlres Structured version   Visualization version   GIF version

Theorem trlres 27589
 Description: The restriction ⟨𝐻, 𝑄⟩ of a trail ⟨𝐹, 𝑃⟩ to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
trlres.v 𝑉 = (Vtx‘𝐺)
trlres.i 𝐼 = (iEdg‘𝐺)
trlres.d (𝜑𝐹(Trails‘𝐺)𝑃)
trlres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlres.h 𝐻 = (𝐹 prefix 𝑁)
trlres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
trlres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlres.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
trlres (𝜑𝐻(Trails‘𝑆)𝑄)

Proof of Theorem trlres
StepHypRef Expression
1 trlres.v . . 3 𝑉 = (Vtx‘𝐺)
2 trlres.i . . 3 𝐼 = (iEdg‘𝐺)
3 trlres.d . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
4 trliswlk 27586 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
53, 4syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
6 trlres.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
7 trlres.s . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
8 trlres.e . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
9 trlres.h . . 3 𝐻 = (𝐹 prefix 𝑁)
10 trlres.q . . 3 𝑄 = (𝑃 ↾ (0...𝑁))
111, 2, 5, 6, 7, 8, 9, 10wlkres 27559 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
121, 2, 3, 6, 9trlreslem 27588 . . 3 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
13 f1of1 6601 . . 3 (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → 𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
14 df-f1 6340 . . . 4 (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐻:(0..^(♯‘𝐻))⟶dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∧ Fun 𝐻))
1514simprbi 500 . . 3 (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → Fun 𝐻)
1612, 13, 153syl 18 . 2 (𝜑 → Fun 𝐻)
17 istrl 27585 . 2 (𝐻(Trails‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ Fun 𝐻))
1811, 16, 17sylanbrc 586 1 (𝜑𝐻(Trails‘𝑆)𝑄)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   class class class wbr 5032  ◡ccnv 5523  dom cdm 5524   ↾ cres 5526   “ cima 5527  Fun wfun 6329  ⟶wf 6331  –1-1→wf1 6332  –1-1-onto→wf1o 6334  ‘cfv 6335  (class class class)co 7150  0cc0 10575  ...cfz 12939  ..^cfzo 13082  ♯chash 13740   prefix cpfx 14079  Vtxcvtx 26888  iEdgciedg 26889  Walkscwlks 27485  Trailsctrls 27579 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-substr 14050  df-pfx 14080  df-wlks 27488  df-trls 27581 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator