| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlres | Structured version Visualization version GIF version | ||
| Description: The restriction 〈𝐻, 𝑄〉 of a trail 〈𝐹, 𝑃〉 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| Ref | Expression |
|---|---|
| trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
| trlres.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| trlres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
| Ref | Expression |
|---|---|
| trlres | ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlres.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | trlres.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 4 | trliswlk 29632 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 6 | trlres.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 7 | trlres.s | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
| 8 | trlres.e | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 9 | trlres.h | . . 3 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
| 10 | trlres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
| 11 | 1, 2, 5, 6, 7, 8, 9, 10 | wlkres 29605 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |
| 12 | 1, 2, 3, 6, 9 | trlreslem 29634 | . . 3 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 13 | f1of1 6802 | . . 3 ⊢ (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → 𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 14 | df-f1 6519 | . . . 4 ⊢ (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐻:(0..^(♯‘𝐻))⟶dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∧ Fun ◡𝐻)) | |
| 15 | 14 | simprbi 496 | . . 3 ⊢ (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → Fun ◡𝐻) |
| 16 | 12, 13, 15 | 3syl 18 | . 2 ⊢ (𝜑 → Fun ◡𝐻) |
| 17 | istrl 29631 | . 2 ⊢ (𝐻(Trails‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ Fun ◡𝐻)) | |
| 18 | 11, 16, 17 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ◡ccnv 5640 dom cdm 5641 ↾ cres 5643 “ cima 5644 Fun wfun 6508 ⟶wf 6510 –1-1→wf1 6511 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 prefix cpfx 14642 Vtxcvtx 28930 iEdgciedg 28931 Walkscwlks 29531 Trailsctrls 29625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-substr 14613 df-pfx 14643 df-wlks 29534 df-trls 29627 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |