Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trlres | Structured version Visualization version GIF version |
Description: The restriction 〈𝐻, 𝑄〉 of a trail 〈𝐹, 𝑃〉 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlres.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
trlres.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
trlres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
Ref | Expression |
---|---|
trlres | ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlres.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | trlres.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
4 | trliswlk 27586 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
6 | trlres.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
7 | trlres.s | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
8 | trlres.e | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
9 | trlres.h | . . 3 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
10 | trlres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
11 | 1, 2, 5, 6, 7, 8, 9, 10 | wlkres 27559 | . 2 ⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |
12 | 1, 2, 3, 6, 9 | trlreslem 27588 | . . 3 ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
13 | f1of1 6601 | . . 3 ⊢ (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → 𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
14 | df-f1 6340 | . . . 4 ⊢ (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐻:(0..^(♯‘𝐻))⟶dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∧ Fun ◡𝐻)) | |
15 | 14 | simprbi 500 | . . 3 ⊢ (𝐻:(0..^(♯‘𝐻))–1-1→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) → Fun ◡𝐻) |
16 | 12, 13, 15 | 3syl 18 | . 2 ⊢ (𝜑 → Fun ◡𝐻) |
17 | istrl 27585 | . 2 ⊢ (𝐻(Trails‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄 ∧ Fun ◡𝐻)) | |
18 | 11, 16, 17 | sylanbrc 586 | 1 ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ◡ccnv 5523 dom cdm 5524 ↾ cres 5526 “ cima 5527 Fun wfun 6329 ⟶wf 6331 –1-1→wf1 6332 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 0cc0 10575 ...cfz 12939 ..^cfzo 13082 ♯chash 13740 prefix cpfx 14079 Vtxcvtx 26888 iEdgciedg 26889 Walkscwlks 27485 Trailsctrls 27579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1059 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-substr 14050 df-pfx 14080 df-wlks 27488 df-trls 27581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |