![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthdep | Structured version Visualization version GIF version |
Description: A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
spthdep | β’ ((πΉ(SPathsβπΊ)π β§ (β―βπΉ) β 0) β (πβ0) β (πβ(β―βπΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isspth 29485 | . . 3 β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) | |
2 | trliswlk 29458 | . . . . . . . . 9 β’ (πΉ(TrailsβπΊ)π β πΉ(WalksβπΊ)π) | |
3 | eqid 2726 | . . . . . . . . . 10 β’ (VtxβπΊ) = (VtxβπΊ) | |
4 | 3 | wlkp 29377 | . . . . . . . . 9 β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
5 | 2, 4 | syl 17 | . . . . . . . 8 β’ (πΉ(TrailsβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
6 | 5 | anim1i 614 | . . . . . . 7 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ Fun β‘π)) |
7 | df-f1 6541 | . . . . . . 7 β’ (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ Fun β‘π)) | |
8 | 6, 7 | sylibr 233 | . . . . . 6 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β π:(0...(β―βπΉ))β1-1β(VtxβπΊ)) |
9 | wlkcl 29376 | . . . . . . . 8 β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β β0) | |
10 | nn0fz0 13602 | . . . . . . . . . 10 β’ ((β―βπΉ) β β0 β (β―βπΉ) β (0...(β―βπΉ))) | |
11 | 10 | biimpi 215 | . . . . . . . . 9 β’ ((β―βπΉ) β β0 β (β―βπΉ) β (0...(β―βπΉ))) |
12 | 0elfz 13601 | . . . . . . . . 9 β’ ((β―βπΉ) β β0 β 0 β (0...(β―βπΉ))) | |
13 | 11, 12 | jca 511 | . . . . . . . 8 β’ ((β―βπΉ) β β0 β ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β (0...(β―βπΉ)))) |
14 | 2, 9, 13 | 3syl 18 | . . . . . . 7 β’ (πΉ(TrailsβπΊ)π β ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β (0...(β―βπΉ)))) |
15 | 14 | adantr 480 | . . . . . 6 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β (0...(β―βπΉ)))) |
16 | 8, 15 | jca 511 | . . . . 5 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β (0...(β―βπΉ))))) |
17 | eqcom 2733 | . . . . . 6 β’ ((πβ0) = (πβ(β―βπΉ)) β (πβ(β―βπΉ)) = (πβ0)) | |
18 | f1veqaeq 7251 | . . . . . 6 β’ ((π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β (0...(β―βπΉ)))) β ((πβ(β―βπΉ)) = (πβ0) β (β―βπΉ) = 0)) | |
19 | 17, 18 | biimtrid 241 | . . . . 5 β’ ((π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β (0...(β―βπΉ)))) β ((πβ0) = (πβ(β―βπΉ)) β (β―βπΉ) = 0)) |
20 | 16, 19 | syl 17 | . . . 4 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β ((πβ0) = (πβ(β―βπΉ)) β (β―βπΉ) = 0)) |
21 | 20 | necon3d 2955 | . . 3 β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β ((β―βπΉ) β 0 β (πβ0) β (πβ(β―βπΉ)))) |
22 | 1, 21 | sylbi 216 | . 2 β’ (πΉ(SPathsβπΊ)π β ((β―βπΉ) β 0 β (πβ0) β (πβ(β―βπΉ)))) |
23 | 22 | imp 406 | 1 β’ ((πΉ(SPathsβπΊ)π β§ (β―βπΉ) β 0) β (πβ0) β (πβ(β―βπΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 class class class wbr 5141 β‘ccnv 5668 Fun wfun 6530 βΆwf 6532 β1-1βwf1 6533 βcfv 6536 (class class class)co 7404 0cc0 11109 β0cn0 12473 ...cfz 13487 β―chash 14292 Vtxcvtx 28759 Walkscwlks 29357 Trailsctrls 29451 SPathscspths 29474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-hash 14293 df-word 14468 df-wlks 29360 df-trls 29453 df-spths 29478 |
This theorem is referenced by: cyclnspth 29561 |
Copyright terms: Public domain | W3C validator |