![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthdep | Structured version Visualization version GIF version |
Description: A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
spthdep | ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isspth 27229 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
2 | trliswlk 27201 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
3 | eqid 2773 | . . . . . . . . . 10 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | 3 | wlkp 27117 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
6 | 5 | anim1i 606 | . . . . . . 7 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡𝑃)) |
7 | df-f1 6191 | . . . . . . 7 ⊢ (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡𝑃)) | |
8 | 6, 7 | sylibr 226 | . . . . . 6 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
9 | wlkcl 27116 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
10 | nn0fz0 12820 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) | |
11 | 10 | biimpi 208 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
12 | 0elfz 12819 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) | |
13 | 11, 12 | jca 504 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
14 | 2, 9, 13 | 3syl 18 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
15 | 14 | adantr 473 | . . . . . 6 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
16 | 8, 15 | jca 504 | . . . . 5 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))) |
17 | eqcom 2780 | . . . . . 6 ⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘(♯‘𝐹)) = (𝑃‘0)) | |
18 | f1veqaeq 6839 | . . . . . 6 ⊢ ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0)) | |
19 | 17, 18 | syl5bi 234 | . . . . 5 ⊢ ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0)) |
20 | 16, 19 | syl 17 | . . . 4 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0)) |
21 | 20 | necon3d 2983 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
22 | 1, 21 | sylbi 209 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
23 | 22 | imp 398 | 1 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ≠ wne 2962 class class class wbr 4926 ◡ccnv 5403 Fun wfun 6180 ⟶wf 6182 –1-1→wf1 6183 ‘cfv 6186 (class class class)co 6975 0cc0 10334 ℕ0cn0 11706 ...cfz 12707 ♯chash 13504 Vtxcvtx 26500 Walkscwlks 27097 Trailsctrls 27194 SPathscspths 27218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-ifp 1045 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-n0 11707 df-z 11793 df-uz 12058 df-fz 12708 df-fzo 12849 df-hash 13505 df-word 13672 df-wlks 27100 df-trls 27196 df-spths 27222 |
This theorem is referenced by: cyclnspth 27305 |
Copyright terms: Public domain | W3C validator |