| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spthdep | Structured version Visualization version GIF version | ||
| Description: A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| spthdep | ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isspth 29695 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 2 | trliswlk 29669 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 3 | eqid 2731 | . . . . . . . . . 10 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 4 | 3 | wlkp 29590 | . . . . . . . . 9 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 5 | 2, 4 | syl 17 | . . . . . . . 8 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 6 | 5 | anim1i 615 | . . . . . . 7 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡𝑃)) |
| 7 | df-f1 6481 | . . . . . . 7 ⊢ (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡𝑃)) | |
| 8 | 6, 7 | sylibr 234 | . . . . . 6 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
| 9 | wlkcl 29589 | . . . . . . . 8 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 10 | nn0fz0 13520 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) | |
| 11 | 10 | biimpi 216 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 12 | 0elfz 13519 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) | |
| 13 | 11, 12 | jca 511 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
| 14 | 2, 9, 13 | 3syl 18 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
| 16 | 8, 15 | jca 511 | . . . . 5 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))) |
| 17 | eqcom 2738 | . . . . . 6 ⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘(♯‘𝐹)) = (𝑃‘0)) | |
| 18 | f1veqaeq 7185 | . . . . . 6 ⊢ ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0)) | |
| 19 | 17, 18 | biimtrid 242 | . . . . 5 ⊢ ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0)) |
| 20 | 16, 19 | syl 17 | . . . 4 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0)) |
| 21 | 20 | necon3d 2949 | . . 3 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃) → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
| 22 | 1, 21 | sylbi 217 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
| 23 | 22 | imp 406 | 1 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ◡ccnv 5610 Fun wfun 6470 ⟶wf 6472 –1-1→wf1 6473 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕ0cn0 12376 ...cfz 13402 ♯chash 14232 Vtxcvtx 28969 Walkscwlks 29570 Trailsctrls 29662 SPathscspths 29684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-wlks 29573 df-trls 29664 df-spths 29688 |
| This theorem is referenced by: cyclnspth 29774 |
| Copyright terms: Public domain | W3C validator |