MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthdep Structured version   Visualization version   GIF version

Theorem spthdep 29716
Description: A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
spthdep ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))

Proof of Theorem spthdep
StepHypRef Expression
1 isspth 29704 . . 3 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
2 trliswlk 29677 . . . . . . . . 9 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2735 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29596 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
52, 4syl 17 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
65anim1i 615 . . . . . . 7 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
7 df-f1 6536 . . . . . . 7 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
86, 7sylibr 234 . . . . . 6 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → 𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺))
9 wlkcl 29595 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
10 nn0fz0 13642 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1110biimpi 216 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
12 0elfz 13641 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1311, 12jca 511 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
142, 9, 133syl 18 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
1514adantr 480 . . . . . 6 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
168, 15jca 511 . . . . 5 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))))
17 eqcom 2742 . . . . . 6 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘(♯‘𝐹)) = (𝑃‘0))
18 f1veqaeq 7249 . . . . . 6 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
1917, 18biimtrid 242 . . . . 5 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0))
2016, 19syl 17 . . . 4 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0))
2120necon3d 2953 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
221, 21sylbi 217 . 2 (𝐹(SPaths‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
2322imp 406 1 ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  ccnv 5653  Fun wfun 6525  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405  0cc0 11129  0cn0 12501  ...cfz 13524  chash 14348  Vtxcvtx 28975  Walkscwlks 29576  Trailsctrls 29670  SPathscspths 29693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-wlks 29579  df-trls 29672  df-spths 29697
This theorem is referenced by:  cyclnspth  29783
  Copyright terms: Public domain W3C validator