MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopi Structured version   Visualization version   GIF version

Theorem txtopi 23094
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
txtopi.1 𝑅 ∈ Top
txtopi.2 𝑆 ∈ Top
Assertion
Ref Expression
txtopi (𝑅 ×t 𝑆) ∈ Top

Proof of Theorem txtopi
StepHypRef Expression
1 txtopi.1 . 2 𝑅 ∈ Top
2 txtopi.2 . 2 𝑆 ∈ Top
3 txtop 23073 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3mp2an 691 1 (𝑅 ×t 𝑆) ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7409  Topctop 22395   ×t ctx 23064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-topgen 17389  df-top 22396  df-bases 22449  df-tx 23066
This theorem is referenced by:  sxbrsigalem3  33271  dya2iocucvr  33283  cvmlift2lem9  34302  cvmlift2lem11  34304  cvmlift2lem12  34305
  Copyright terms: Public domain W3C validator