| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txtopi | Structured version Visualization version GIF version | ||
| Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| txtopi.1 | ⊢ 𝑅 ∈ Top |
| txtopi.2 | ⊢ 𝑆 ∈ Top |
| Ref | Expression |
|---|---|
| txtopi | ⊢ (𝑅 ×t 𝑆) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txtopi.1 | . 2 ⊢ 𝑅 ∈ Top | |
| 2 | txtopi.2 | . 2 ⊢ 𝑆 ∈ Top | |
| 3 | txtop 23491 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑅 ×t 𝑆) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7370 Topctop 22815 ×t ctx 23482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-1st 7948 df-2nd 7949 df-topgen 17384 df-top 22816 df-bases 22868 df-tx 23484 |
| This theorem is referenced by: sxbrsigalem3 34258 dya2iocucvr 34270 cvmlift2lem9 35293 cvmlift2lem11 35295 cvmlift2lem12 35296 |
| Copyright terms: Public domain | W3C validator |