Step | Hyp | Ref
| Expression |
1 | | ovex 7308 |
. . . . . . 7
⊢ (𝑅 Cn 𝑆) ∈ V |
2 | 1 | pwex 5303 |
. . . . . 6
⊢ 𝒫
(𝑅 Cn 𝑆) ∈ V |
3 | | xkoopn.x |
. . . . . . . 8
⊢ 𝑋 = ∪
𝑅 |
4 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
5 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
6 | 3, 4, 5 | xkotf 22736 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
7 | | frn 6607 |
. . . . . . 7
⊢ ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)) |
8 | 6, 7 | ax-mp 5 |
. . . . . 6
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) |
9 | 2, 8 | ssexi 5246 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V |
10 | | ssfii 9178 |
. . . . 5
⊢ (ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) |
11 | 9, 10 | ax-mp 5 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
12 | | fvex 6787 |
. . . . 5
⊢
(fi‘ran (𝑘
∈ {𝑥 ∈ 𝒫
𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ V |
13 | | bastg 22116 |
. . . . 5
⊢
((fi‘ran (𝑘
∈ {𝑥 ∈ 𝒫
𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ V → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
14 | 12, 13 | ax-mp 5 |
. . . 4
⊢
(fi‘ran (𝑘
∈ {𝑥 ∈ 𝒫
𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) |
15 | 11, 14 | sstri 3930 |
. . 3
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) |
16 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑅 ↾t 𝑥) = (𝑅 ↾t 𝐴)) |
17 | 16 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑅 ↾t 𝑥) ∈ Comp ↔ (𝑅 ↾t 𝐴) ∈ Comp)) |
18 | | xkoopn.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
19 | | xkoopn.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Top) |
20 | 3 | topopn 22055 |
. . . . . . . 8
⊢ (𝑅 ∈ Top → 𝑋 ∈ 𝑅) |
21 | | elpw2g 5268 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑅 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
22 | 19, 20, 21 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
23 | 18, 22 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
24 | | xkoopn.c |
. . . . . 6
⊢ (𝜑 → (𝑅 ↾t 𝐴) ∈ Comp) |
25 | 17, 23, 24 | elrabd 3626 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}) |
26 | | xkoopn.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
27 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈}) |
28 | | imaeq2 5965 |
. . . . . . . . 9
⊢ (𝑘 = 𝐴 → (𝑓 “ 𝑘) = (𝑓 “ 𝐴)) |
29 | 28 | sseq1d 3952 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ (𝑓 “ 𝐴) ⊆ 𝑣)) |
30 | 29 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑣}) |
31 | 30 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑘 = 𝐴 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑣})) |
32 | | sseq2 3947 |
. . . . . . . 8
⊢ (𝑣 = 𝑈 → ((𝑓 “ 𝐴) ⊆ 𝑣 ↔ (𝑓 “ 𝐴) ⊆ 𝑈)) |
33 | 32 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑣 = 𝑈 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈}) |
34 | 33 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑣 = 𝑈 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈})) |
35 | 31, 34 | rspc2ev 3572 |
. . . . 5
⊢ ((𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} ∧ 𝑈 ∈ 𝑆 ∧ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈}) → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
36 | 25, 26, 27, 35 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
37 | 1 | rabex 5256 |
. . . . 5
⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ V |
38 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
39 | 38 | 2rexbidv 3229 |
. . . . 5
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} → (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
40 | 5 | rnmpo 7407 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
41 | 37, 39, 40 | elab2 3613 |
. . . 4
⊢ ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
42 | 36, 41 | sylibr 233 |
. . 3
⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
43 | 15, 42 | sselid 3919 |
. 2
⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
44 | | xkoopn.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ Top) |
45 | 3, 4, 5 | xkoval 22738 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
46 | 19, 44, 45 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
47 | 43, 46 | eleqtrrd 2842 |
1
⊢ (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝐴) ⊆ 𝑈} ∈ (𝑆 ↑ko 𝑅)) |