MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoopn Structured version   Visualization version   GIF version

Theorem xkoopn 22194
Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoopn.x 𝑋 = 𝑅
xkoopn.r (𝜑𝑅 ∈ Top)
xkoopn.s (𝜑𝑆 ∈ Top)
xkoopn.a (𝜑𝐴𝑋)
xkoopn.c (𝜑 → (𝑅t 𝐴) ∈ Comp)
xkoopn.u (𝜑𝑈𝑆)
Assertion
Ref Expression
xkoopn (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (𝑆ko 𝑅))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑋(𝑓)

Proof of Theorem xkoopn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7168 . . . . . . 7 (𝑅 Cn 𝑆) ∈ V
21pwex 5246 . . . . . 6 𝒫 (𝑅 Cn 𝑆) ∈ V
3 xkoopn.x . . . . . . . 8 𝑋 = 𝑅
4 eqid 2798 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
5 eqid 2798 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
63, 4, 5xkotf 22190 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
7 frn 6493 . . . . . . 7 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
86, 7ax-mp 5 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
92, 8ssexi 5190 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
10 ssfii 8867 . . . . 5 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
119, 10ax-mp 5 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
12 fvex 6658 . . . . 5 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
13 bastg 21571 . . . . 5 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
1412, 13ax-mp 5 . . . 4 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
1511, 14sstri 3924 . . 3 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
16 oveq2 7143 . . . . . . 7 (𝑥 = 𝐴 → (𝑅t 𝑥) = (𝑅t 𝐴))
1716eleq1d 2874 . . . . . 6 (𝑥 = 𝐴 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝐴) ∈ Comp))
18 xkoopn.a . . . . . . 7 (𝜑𝐴𝑋)
19 xkoopn.r . . . . . . . 8 (𝜑𝑅 ∈ Top)
203topopn 21511 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
21 elpw2g 5211 . . . . . . . 8 (𝑋𝑅 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
2219, 20, 213syl 18 . . . . . . 7 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
2318, 22mpbird 260 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝑋)
24 xkoopn.c . . . . . 6 (𝜑 → (𝑅t 𝐴) ∈ Comp)
2517, 23, 24elrabd 3630 . . . . 5 (𝜑𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
26 xkoopn.u . . . . 5 (𝜑𝑈𝑆)
27 eqidd 2799 . . . . 5 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈})
28 imaeq2 5892 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑓𝑘) = (𝑓𝐴))
2928sseq1d 3946 . . . . . . . 8 (𝑘 = 𝐴 → ((𝑓𝑘) ⊆ 𝑣 ↔ (𝑓𝐴) ⊆ 𝑣))
3029rabbidv 3427 . . . . . . 7 (𝑘 = 𝐴 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣})
3130eqeq2d 2809 . . . . . 6 (𝑘 = 𝐴 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣}))
32 sseq2 3941 . . . . . . . 8 (𝑣 = 𝑈 → ((𝑓𝐴) ⊆ 𝑣 ↔ (𝑓𝐴) ⊆ 𝑈))
3332rabbidv 3427 . . . . . . 7 (𝑣 = 𝑈 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈})
3433eqeq2d 2809 . . . . . 6 (𝑣 = 𝑈 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈}))
3531, 34rspc2ev 3583 . . . . 5 ((𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} ∧ 𝑈𝑆 ∧ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈}) → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
3625, 26, 27, 35syl3anc 1368 . . . 4 (𝜑 → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
371rabex 5199 . . . . 5 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ V
38 eqeq1 2802 . . . . . 6 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
39382rexbidv 3259 . . . . 5 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} → (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
405rnmpo 7263 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
4137, 39, 40elab2 3618 . . . 4 ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
4236, 41sylibr 237 . . 3 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4315, 42sseldi 3913 . 2 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
44 xkoopn.s . . 3 (𝜑𝑆 ∈ Top)
453, 4, 5xkoval 22192 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
4619, 44, 45syl2anc 587 . 2 (𝜑 → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
4743, 46eleqtrrd 2893 1 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (𝑆ko 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  𝒫 cpw 4497   cuni 4800   × cxp 5517  ran crn 5520  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  ficfi 8858  t crest 16686  topGenctg 16703  Topctop 21498   Cn ccn 21829  Compccmp 21991  ko cxko 22166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-1o 8085  df-en 8493  df-fin 8496  df-fi 8859  df-topgen 16709  df-top 21499  df-xko 22168
This theorem is referenced by:  xkouni  22204  xkohaus  22258  xkoptsub  22259  xkoco1cn  22262  xkoco2cn  22263  xkococnlem  22264
  Copyright terms: Public domain W3C validator