Proof of Theorem uhgrimprop
| Step | Hyp | Ref
| Expression |
| 1 | | uhgrimprop.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | uhgrimprop.w |
. . . 4
⊢ 𝑊 = (Vtx‘𝐻) |
| 3 | 1, 2 | grimf1o 47845 |
. . 3
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) |
| 4 | 3 | 3ad2ant3 1135 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹:𝑉–1-1-onto→𝑊) |
| 5 | | 3simpa 1148 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 6 | | simp3 1138 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
| 7 | | prssi 4797 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ⊆ 𝑉) |
| 8 | 7, 1 | sseqtrdi 3999 |
. . . . 5
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → {𝑥, 𝑦} ⊆ (Vtx‘𝐺)) |
| 9 | | uhgrimedgi.e |
. . . . . 6
⊢ 𝐸 = (Edg‘𝐺) |
| 10 | | uhgrimedgi.d |
. . . . . 6
⊢ 𝐷 = (Edg‘𝐻) |
| 11 | 9, 10 | uhgrimedg 47852 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ {𝑥, 𝑦} ⊆ (Vtx‘𝐺)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷)) |
| 12 | 5, 6, 8, 11 | syl2an3an 1424 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷)) |
| 13 | | f1ofn 6818 |
. . . . . . . . . 10
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹 Fn 𝑉) |
| 14 | 3, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 Fn 𝑉) |
| 15 | 14 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 Fn 𝑉) |
| 16 | 15 | anim1i 615 |
. . . . . . 7
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 17 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
| 18 | 16, 17 | sylibr 234 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
| 19 | | fnimapr 6961 |
. . . . . 6
⊢ ((𝐹 Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹‘𝑥), (𝐹‘𝑦)}) |
| 20 | 18, 19 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹‘𝑥), (𝐹‘𝑦)}) |
| 21 | 20 | eleq1d 2819 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) |
| 22 | 12, 21 | bitrd 279 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) |
| 23 | 22 | ralrimivva 3187 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷)) |
| 24 | 4, 23 | jca 511 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹‘𝑥), (𝐹‘𝑦)} ∈ 𝐷))) |