Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimprop Structured version   Visualization version   GIF version

Theorem uhgrimprop 47991
Description: An isomorphism between hypergraphs is a bijection between their vertices that preserves adjacency for simple edges, i.e. there is a simple edge in one graph connecting one or two vertices iff there is a simple edge in the other graph connecting the vertices which are the images of the vertices. (Contributed by AV, 27-Apr-2025.) (Revised by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
uhgrimprop.v 𝑉 = (Vtx‘𝐺)
uhgrimprop.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
uhgrimprop ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑦,𝑉
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑉(𝑥)   𝑊(𝑥,𝑦)

Proof of Theorem uhgrimprop
StepHypRef Expression
1 uhgrimprop.v . . . 4 𝑉 = (Vtx‘𝐺)
2 uhgrimprop.w . . . 4 𝑊 = (Vtx‘𝐻)
31, 2grimf1o 47983 . . 3 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)
433ad2ant3 1135 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹:𝑉1-1-onto𝑊)
5 3simpa 1148 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
6 simp3 1138 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphIso 𝐻))
7 prssi 4770 . . . . . 6 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ⊆ 𝑉)
87, 1sseqtrdi 3970 . . . . 5 ((𝑥𝑉𝑦𝑉) → {𝑥, 𝑦} ⊆ (Vtx‘𝐺))
9 uhgrimedgi.e . . . . . 6 𝐸 = (Edg‘𝐺)
10 uhgrimedgi.d . . . . . 6 𝐷 = (Edg‘𝐻)
119, 10uhgrimedg 47990 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ {𝑥, 𝑦} ⊆ (Vtx‘𝐺)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷))
125, 6, 8, 11syl2an3an 1424 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ (𝐹 “ {𝑥, 𝑦}) ∈ 𝐷))
13 f1ofn 6764 . . . . . . . . . 10 (𝐹:𝑉1-1-onto𝑊𝐹 Fn 𝑉)
143, 13syl 17 . . . . . . . . 9 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 Fn 𝑉)
15143ad2ant3 1135 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 Fn 𝑉)
1615anim1i 615 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 Fn 𝑉 ∧ (𝑥𝑉𝑦𝑉)))
17 3anass 1094 . . . . . . 7 ((𝐹 Fn 𝑉𝑥𝑉𝑦𝑉) ↔ (𝐹 Fn 𝑉 ∧ (𝑥𝑉𝑦𝑉)))
1816, 17sylibr 234 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 Fn 𝑉𝑥𝑉𝑦𝑉))
19 fnimapr 6905 . . . . . 6 ((𝐹 Fn 𝑉𝑥𝑉𝑦𝑉) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹𝑥), (𝐹𝑦)})
2018, 19syl 17 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥𝑉𝑦𝑉)) → (𝐹 “ {𝑥, 𝑦}) = {(𝐹𝑥), (𝐹𝑦)})
2120eleq1d 2816 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥𝑉𝑦𝑉)) → ((𝐹 “ {𝑥, 𝑦}) ∈ 𝐷 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
2212, 21bitrd 279 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) ∧ (𝑥𝑉𝑦𝑉)) → ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
2322ralrimivva 3175 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷))
244, 23jca 511 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐹:𝑉1-1-onto𝑊 ∧ ∀𝑥𝑉𝑦𝑉 ({𝑥, 𝑦} ∈ 𝐸 ↔ {(𝐹𝑥), (𝐹𝑦)} ∈ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3897  {cpr 4575  cima 5617   Fn wfn 6476  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  Edgcedg 29025  UHGraphcuhgr 29034   GraphIso cgrim 47974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-edg 29026  df-uhgr 29036  df-grim 47977
This theorem is referenced by:  isuspgrim  47995
  Copyright terms: Public domain W3C validator