Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimf1o Structured version   Visualization version   GIF version

Theorem grimf1o 47843
Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025.)
Hypotheses
Ref Expression
grimprop.v 𝑉 = (Vtx‘𝐺)
grimprop.w 𝑊 = (Vtx‘𝐻)
Assertion
Ref Expression
grimf1o (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)

Proof of Theorem grimf1o
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grimprop.v . . 3 𝑉 = (Vtx‘𝐺)
2 grimprop.w . . 3 𝑊 = (Vtx‘𝐻)
3 eqid 2734 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2734 . . 3 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4grimprop 47842 . 2 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
65simpld 494 1 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉1-1-onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3050  dom cdm 5665  cima 5668  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  iEdgciedg 28943   GraphIso cgrim 47834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-grim 47837
This theorem is referenced by:  gricen  47867  clnbgrgrimlem  47874  clnbgrgrim  47875  grimgrtri  47889  uhgrimgrlim  47927
  Copyright terms: Public domain W3C validator