| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grimf1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025.) |
| Ref | Expression |
|---|---|
| grimprop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| grimprop.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| Ref | Expression |
|---|---|
| grimf1o | ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimprop.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | grimprop.w | . . 3 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 3 | eqid 2729 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 4 | eqid 2729 | . . 3 ⊢ (iEdg‘𝐻) = (iEdg‘𝐻) | |
| 5 | 1, 2, 3, 4 | grimprop 47880 | . 2 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 dom cdm 5638 “ cima 5641 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 iEdgciedg 28924 GraphIso cgrim 47872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-grim 47875 |
| This theorem is referenced by: uhgrimedg 47888 uhgrimprop 47889 upgrimwlklem4 47897 upgrimwlklem5 47898 upgrimtrlslem2 47902 upgrimpthslem1 47904 upgrimpthslem2 47905 upgrimspths 47907 gricen 47922 clnbgrgrimlem 47930 clnbgrgrim 47931 grimgrtri 47945 uhgrimgrlim 47983 |
| Copyright terms: Public domain | W3C validator |