Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimedg Structured version   Visualization version   GIF version

Theorem uhgrimedg 47884
Description: An isomorphism between graphs preserves edges, i.e. there is an edge in one graph connecting vertices iff there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uhgrimedg (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐾𝐸 ↔ (𝐹𝐾) ∈ 𝐷))

Proof of Theorem uhgrimedg
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
2 simp2 1137 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹 ∈ (𝐺 GraphIso 𝐻))
32anim1i 615 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ 𝐾𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸))
4 uhgrimedgi.e . . . 4 𝐸 = (Edg‘𝐺)
5 uhgrimedgi.d . . . 4 𝐷 = (Edg‘𝐻)
64, 5uhgrimedgi 47883 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)
71, 3, 6syl2an2r 685 . 2 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ 𝐾𝐸) → (𝐹𝐾) ∈ 𝐷)
8 eqid 2729 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2729 . . . . . . . . 9 (Vtx‘𝐻) = (Vtx‘𝐻)
108, 9grimf1o 47877 . . . . . . . 8 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
11 f1of1 6781 . . . . . . . 8 (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
1210, 11syl 17 . . . . . . 7 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
13123ad2ant2 1134 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
14 simp3 1138 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐾 ⊆ (Vtx‘𝐺))
1513, 14jca 511 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)))
1615adantr 480 . . . 4 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)))
17 f1imacnv 6798 . . . 4 ((𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐹 “ (𝐹𝐾)) = 𝐾)
1816, 17syl 17 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹 “ (𝐹𝐾)) = 𝐾)
19 pm3.22 459 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph))
20193ad2ant1 1133 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph))
21 simpl 482 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ∈ UHGraph)
2221anim1i 615 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)))
23223adant3 1132 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)))
24 grimcnv 47881 . . . . . . 7 (𝐺 ∈ UHGraph → (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 ∈ (𝐻 GraphIso 𝐺)))
2524imp 406 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐻 GraphIso 𝐺))
2623, 25syl 17 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹 ∈ (𝐻 GraphIso 𝐺))
2726anim1i 615 . . . 4 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹 ∈ (𝐻 GraphIso 𝐺) ∧ (𝐹𝐾) ∈ 𝐷))
285, 4uhgrimedgi 47883 . . . 4 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ (𝐹 ∈ (𝐻 GraphIso 𝐺) ∧ (𝐹𝐾) ∈ 𝐷)) → (𝐹 “ (𝐹𝐾)) ∈ 𝐸)
2920, 27, 28syl2an2r 685 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹 “ (𝐹𝐾)) ∈ 𝐸)
3018, 29eqeltrrd 2829 . 2 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → 𝐾𝐸)
317, 30impbida 800 1 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐾𝐸 ↔ (𝐹𝐾) ∈ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  ccnv 5630  cima 5634  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Vtxcvtx 28976  Edgcedg 29027  UHGraphcuhgr 29036   GraphIso cgrim 47868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-edg 29028  df-uhgr 29038  df-grim 47871
This theorem is referenced by:  uhgrimprop  47885
  Copyright terms: Public domain W3C validator