Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uhgrimedg Structured version   Visualization version   GIF version

Theorem uhgrimedg 47990
Description: An isomorphism between graphs preserves edges, i.e. there is an edge in one graph connecting vertices iff there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025.)
Hypotheses
Ref Expression
uhgrimedgi.e 𝐸 = (Edg‘𝐺)
uhgrimedgi.d 𝐷 = (Edg‘𝐻)
Assertion
Ref Expression
uhgrimedg (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐾𝐸 ↔ (𝐹𝐾) ∈ 𝐷))

Proof of Theorem uhgrimedg
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph))
2 simp2 1137 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹 ∈ (𝐺 GraphIso 𝐻))
32anim1i 615 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ 𝐾𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸))
4 uhgrimedgi.e . . . 4 𝐸 = (Edg‘𝐺)
5 uhgrimedgi.d . . . 4 𝐷 = (Edg‘𝐻)
64, 5uhgrimedgi 47989 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾𝐸)) → (𝐹𝐾) ∈ 𝐷)
71, 3, 6syl2an2r 685 . 2 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ 𝐾𝐸) → (𝐹𝐾) ∈ 𝐷)
8 eqid 2731 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2731 . . . . . . . . 9 (Vtx‘𝐻) = (Vtx‘𝐻)
108, 9grimf1o 47983 . . . . . . . 8 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
11 f1of1 6762 . . . . . . . 8 (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
1210, 11syl 17 . . . . . . 7 (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
13123ad2ant2 1134 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻))
14 simp3 1138 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐾 ⊆ (Vtx‘𝐺))
1513, 14jca 511 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)))
1615adantr 480 . . . 4 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)))
17 f1imacnv 6779 . . . 4 ((𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐹 “ (𝐹𝐾)) = 𝐾)
1816, 17syl 17 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹 “ (𝐹𝐾)) = 𝐾)
19 pm3.22 459 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph))
20193ad2ant1 1133 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph))
21 simpl 482 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ∈ UHGraph)
2221anim1i 615 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)))
23223adant3 1132 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)))
24 grimcnv 47987 . . . . . . 7 (𝐺 ∈ UHGraph → (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹 ∈ (𝐻 GraphIso 𝐺)))
2524imp 406 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐻 GraphIso 𝐺))
2623, 25syl 17 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹 ∈ (𝐻 GraphIso 𝐺))
2726anim1i 615 . . . 4 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹 ∈ (𝐻 GraphIso 𝐺) ∧ (𝐹𝐾) ∈ 𝐷))
285, 4uhgrimedgi 47989 . . . 4 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ (𝐹 ∈ (𝐻 GraphIso 𝐺) ∧ (𝐹𝐾) ∈ 𝐷)) → (𝐹 “ (𝐹𝐾)) ∈ 𝐸)
2920, 27, 28syl2an2r 685 . . 3 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → (𝐹 “ (𝐹𝐾)) ∈ 𝐸)
3018, 29eqeltrrd 2832 . 2 ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹𝐾) ∈ 𝐷) → 𝐾𝐸)
317, 30impbida 800 1 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐾𝐸 ↔ (𝐹𝐾) ∈ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  ccnv 5613  cima 5617  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  Edgcedg 29025  UHGraphcuhgr 29034   GraphIso cgrim 47974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-edg 29026  df-uhgr 29036  df-grim 47977
This theorem is referenced by:  uhgrimprop  47991
  Copyright terms: Public domain W3C validator