Proof of Theorem uhgrimedg
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph)) |
| 2 | | simp2 1137 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
| 3 | 2 | anim1i 615 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ 𝐾 ∈ 𝐸) → (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ∈ 𝐸)) |
| 4 | | uhgrimedgi.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
| 5 | | uhgrimedgi.d |
. . . 4
⊢ 𝐷 = (Edg‘𝐻) |
| 6 | 4, 5 | uhgrimedgi 47851 |
. . 3
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ (𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ∈ 𝐸)) → (𝐹 “ 𝐾) ∈ 𝐷) |
| 7 | 1, 3, 6 | syl2an2r 685 |
. 2
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ 𝐾 ∈ 𝐸) → (𝐹 “ 𝐾) ∈ 𝐷) |
| 8 | | eqid 2735 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 9 | | eqid 2735 |
. . . . . . . . 9
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 10 | 8, 9 | grimf1o 47845 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 11 | | f1of1 6816 |
. . . . . . . 8
⊢ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 13 | 12 | 3ad2ant2 1134 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
| 14 | | simp3 1138 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → 𝐾 ⊆ (Vtx‘𝐺)) |
| 15 | 13, 14 | jca 511 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺))) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹 “ 𝐾) ∈ 𝐷) → (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺))) |
| 17 | | f1imacnv 6833 |
. . . 4
⊢ ((𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (◡𝐹 “ (𝐹 “ 𝐾)) = 𝐾) |
| 18 | 16, 17 | syl 17 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹 “ 𝐾) ∈ 𝐷) → (◡𝐹 “ (𝐹 “ 𝐾)) = 𝐾) |
| 19 | | pm3.22 459 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐻 ∈ UHGraph ∧ 𝐺 ∈
UHGraph)) |
| 20 | 19 | 3ad2ant1 1133 |
. . . 4
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) |
| 21 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → 𝐺 ∈
UHGraph) |
| 22 | 21 | anim1i 615 |
. . . . . . 7
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 23 | 22 | 3adant3 1132 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻))) |
| 24 | | grimcnv 47849 |
. . . . . . 7
⊢ (𝐺 ∈ UHGraph → (𝐹 ∈ (𝐺 GraphIso 𝐻) → ◡𝐹 ∈ (𝐻 GraphIso 𝐺))) |
| 25 | 24 | imp 406 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ◡𝐹 ∈ (𝐻 GraphIso 𝐺)) |
| 26 | 23, 25 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → ◡𝐹 ∈ (𝐻 GraphIso 𝐺)) |
| 27 | 26 | anim1i 615 |
. . . 4
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹 “ 𝐾) ∈ 𝐷) → (◡𝐹 ∈ (𝐻 GraphIso 𝐺) ∧ (𝐹 “ 𝐾) ∈ 𝐷)) |
| 28 | 5, 4 | uhgrimedgi 47851 |
. . . 4
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ (◡𝐹 ∈ (𝐻 GraphIso 𝐺) ∧ (𝐹 “ 𝐾) ∈ 𝐷)) → (◡𝐹 “ (𝐹 “ 𝐾)) ∈ 𝐸) |
| 29 | 20, 27, 28 | syl2an2r 685 |
. . 3
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹 “ 𝐾) ∈ 𝐷) → (◡𝐹 “ (𝐹 “ 𝐾)) ∈ 𝐸) |
| 30 | 18, 29 | eqeltrrd 2835 |
. 2
⊢ ((((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) ∧ (𝐹 “ 𝐾) ∈ 𝐷) → 𝐾 ∈ 𝐸) |
| 31 | 7, 30 | impbida 800 |
1
⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻) ∧ 𝐾 ⊆ (Vtx‘𝐺)) → (𝐾 ∈ 𝐸 ↔ (𝐹 “ 𝐾) ∈ 𝐷)) |