| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version | ||
| Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| old1 | ⊢ ( O ‘1o) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8492 | . . 3 ⊢ 1o ∈ On | |
| 2 | oldval 27814 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
| 4 | df1o2 8487 | . . . . . 6 ⊢ 1o = {∅} | |
| 5 | 4 | imaeq2i 6045 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
| 6 | madef 27816 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
| 7 | ffn 6706 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
| 9 | 0elon 6407 | . . . . . 6 ⊢ ∅ ∈ On | |
| 10 | fnsnfv 6958 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
| 12 | 5, 11 | eqtr4i 2761 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
| 13 | 12 | unieqi 4895 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
| 14 | fvex 6889 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
| 15 | 14 | unisn 4902 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
| 16 | made0 27837 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
| 17 | 15, 16 | eqtri 2758 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
| 18 | 13, 17 | eqtri 2758 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
| 19 | 3, 18 | eqtri 2758 | 1 ⊢ ( O ‘1o) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∅c0 4308 𝒫 cpw 4575 {csn 4601 ∪ cuni 4883 “ cima 5657 Oncon0 6352 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 1oc1o 8473 No csur 27603 0s c0s 27786 M cmade 27802 O cold 27803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-0s 27788 df-made 27807 df-old 27808 |
| This theorem is referenced by: left1s 27858 right1s 27859 |
| Copyright terms: Public domain | W3C validator |