![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version |
Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
Ref | Expression |
---|---|
old1 | ⊢ ( O ‘1o) = { 0s } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8482 | . . 3 ⊢ 1o ∈ On | |
2 | oldval 27587 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
4 | df1o2 8477 | . . . . . 6 ⊢ 1o = {∅} | |
5 | 4 | imaeq2i 6057 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
6 | madef 27589 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
7 | ffn 6717 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
9 | 0elon 6418 | . . . . . 6 ⊢ ∅ ∈ On | |
10 | fnsnfv 6970 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
11 | 8, 9, 10 | mp2an 689 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
12 | 5, 11 | eqtr4i 2762 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
13 | 12 | unieqi 4921 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
14 | fvex 6904 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
15 | 14 | unisn 4930 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
16 | made0 27606 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
17 | 15, 16 | eqtri 2759 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
18 | 13, 17 | eqtri 2759 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
19 | 3, 18 | eqtri 2759 | 1 ⊢ ( O ‘1o) = { 0s } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∅c0 4322 𝒫 cpw 4602 {csn 4628 ∪ cuni 4908 “ cima 5679 Oncon0 6364 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 1oc1o 8463 No csur 27380 0s c0s 27561 M cmade 27575 O cold 27576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-1o 8470 df-2o 8471 df-no 27383 df-slt 27384 df-bday 27385 df-sslt 27520 df-scut 27522 df-0s 27563 df-made 27580 df-old 27581 |
This theorem is referenced by: left1s 27627 right1s 27628 |
Copyright terms: Public domain | W3C validator |