![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version |
Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
Ref | Expression |
---|---|
old1 | ⊢ ( O ‘1o) = { 0s } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8517 | . . 3 ⊢ 1o ∈ On | |
2 | oldval 27908 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
4 | df1o2 8512 | . . . . . 6 ⊢ 1o = {∅} | |
5 | 4 | imaeq2i 6078 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
6 | madef 27910 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
7 | ffn 6737 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
9 | 0elon 6440 | . . . . . 6 ⊢ ∅ ∈ On | |
10 | fnsnfv 6988 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
12 | 5, 11 | eqtr4i 2766 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
13 | 12 | unieqi 4924 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
14 | fvex 6920 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
15 | 14 | unisn 4931 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
16 | made0 27927 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
17 | 15, 16 | eqtri 2763 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
18 | 13, 17 | eqtri 2763 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
19 | 3, 18 | eqtri 2763 | 1 ⊢ ( O ‘1o) = { 0s } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 “ cima 5692 Oncon0 6386 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 1oc1o 8498 No csur 27699 0s c0s 27882 M cmade 27896 O cold 27897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-bday 27704 df-sslt 27841 df-scut 27843 df-0s 27884 df-made 27901 df-old 27902 |
This theorem is referenced by: left1s 27948 right1s 27949 |
Copyright terms: Public domain | W3C validator |