| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version | ||
| Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| old1 | ⊢ ( O ‘1o) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8449 | . . 3 ⊢ 1o ∈ On | |
| 2 | oldval 27769 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
| 4 | df1o2 8444 | . . . . . 6 ⊢ 1o = {∅} | |
| 5 | 4 | imaeq2i 6032 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
| 6 | madef 27771 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
| 7 | ffn 6691 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
| 9 | 0elon 6390 | . . . . . 6 ⊢ ∅ ∈ On | |
| 10 | fnsnfv 6943 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
| 12 | 5, 11 | eqtr4i 2756 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
| 13 | 12 | unieqi 4886 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
| 14 | fvex 6874 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
| 15 | 14 | unisn 4893 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
| 16 | made0 27792 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
| 17 | 15, 16 | eqtri 2753 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
| 18 | 13, 17 | eqtri 2753 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
| 19 | 3, 18 | eqtri 2753 | 1 ⊢ ( O ‘1o) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 “ cima 5644 Oncon0 6335 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 1oc1o 8430 No csur 27558 0s c0s 27741 M cmade 27757 O cold 27758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 df-made 27762 df-old 27763 |
| This theorem is referenced by: left1s 27813 right1s 27814 |
| Copyright terms: Public domain | W3C validator |