| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version | ||
| Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| old1 | ⊢ ( O ‘1o) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8407 | . . 3 ⊢ 1o ∈ On | |
| 2 | oldval 27782 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
| 4 | df1o2 8402 | . . . . . 6 ⊢ 1o = {∅} | |
| 5 | 4 | imaeq2i 6013 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
| 6 | madef 27784 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
| 7 | ffn 6656 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
| 9 | 0elon 6366 | . . . . . 6 ⊢ ∅ ∈ On | |
| 10 | fnsnfv 6906 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
| 12 | 5, 11 | eqtr4i 2755 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
| 13 | 12 | unieqi 4873 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
| 14 | fvex 6839 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
| 15 | 14 | unisn 4880 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
| 16 | made0 27805 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
| 17 | 15, 16 | eqtri 2752 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
| 18 | 13, 17 | eqtri 2752 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
| 19 | 3, 18 | eqtri 2752 | 1 ⊢ ( O ‘1o) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 “ cima 5626 Oncon0 6311 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 1oc1o 8388 No csur 27567 0s c0s 27754 M cmade 27770 O cold 27771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 |
| This theorem is referenced by: left1s 27827 right1s 27828 |
| Copyright terms: Public domain | W3C validator |