| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version | ||
| Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| old1 | ⊢ ( O ‘1o) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8446 | . . 3 ⊢ 1o ∈ On | |
| 2 | oldval 27762 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
| 4 | df1o2 8441 | . . . . . 6 ⊢ 1o = {∅} | |
| 5 | 4 | imaeq2i 6029 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
| 6 | madef 27764 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
| 7 | ffn 6688 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
| 9 | 0elon 6387 | . . . . . 6 ⊢ ∅ ∈ On | |
| 10 | fnsnfv 6940 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
| 12 | 5, 11 | eqtr4i 2755 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
| 13 | 12 | unieqi 4883 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
| 14 | fvex 6871 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
| 15 | 14 | unisn 4890 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
| 16 | made0 27785 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
| 17 | 15, 16 | eqtri 2752 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
| 18 | 13, 17 | eqtri 2752 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
| 19 | 3, 18 | eqtri 2752 | 1 ⊢ ( O ‘1o) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4296 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 “ cima 5641 Oncon0 6332 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 1oc1o 8427 No csur 27551 0s c0s 27734 M cmade 27750 O cold 27751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-0s 27736 df-made 27755 df-old 27756 |
| This theorem is referenced by: left1s 27806 right1s 27807 |
| Copyright terms: Public domain | W3C validator |