| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > old1 | Structured version Visualization version GIF version | ||
| Description: The only surreal older than 1o is 0s. (Contributed by Scott Fenton, 4-Feb-2025.) |
| Ref | Expression |
|---|---|
| old1 | ⊢ ( O ‘1o) = { 0s } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8392 | . . 3 ⊢ 1o ∈ On | |
| 2 | oldval 27788 | . . 3 ⊢ (1o ∈ On → ( O ‘1o) = ∪ ( M “ 1o)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( O ‘1o) = ∪ ( M “ 1o) |
| 4 | df1o2 8387 | . . . . . 6 ⊢ 1o = {∅} | |
| 5 | 4 | imaeq2i 6004 | . . . . 5 ⊢ ( M “ 1o) = ( M “ {∅}) |
| 6 | madef 27790 | . . . . . . 7 ⊢ M :On⟶𝒫 No | |
| 7 | ffn 6647 | . . . . . . 7 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ M Fn On |
| 9 | 0elon 6357 | . . . . . 6 ⊢ ∅ ∈ On | |
| 10 | fnsnfv 6896 | . . . . . 6 ⊢ (( M Fn On ∧ ∅ ∈ On) → {( M ‘∅)} = ( M “ {∅})) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ {( M ‘∅)} = ( M “ {∅}) |
| 12 | 5, 11 | eqtr4i 2756 | . . . 4 ⊢ ( M “ 1o) = {( M ‘∅)} |
| 13 | 12 | unieqi 4869 | . . 3 ⊢ ∪ ( M “ 1o) = ∪ {( M ‘∅)} |
| 14 | fvex 6830 | . . . . 5 ⊢ ( M ‘∅) ∈ V | |
| 15 | 14 | unisn 4876 | . . . 4 ⊢ ∪ {( M ‘∅)} = ( M ‘∅) |
| 16 | made0 27811 | . . . 4 ⊢ ( M ‘∅) = { 0s } | |
| 17 | 15, 16 | eqtri 2753 | . . 3 ⊢ ∪ {( M ‘∅)} = { 0s } |
| 18 | 13, 17 | eqtri 2753 | . 2 ⊢ ∪ ( M “ 1o) = { 0s } |
| 19 | 3, 18 | eqtri 2753 | 1 ⊢ ( O ‘1o) = { 0s } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 ∅c0 4281 𝒫 cpw 4548 {csn 4574 ∪ cuni 4857 “ cima 5617 Oncon0 6302 Fn wfn 6472 ⟶wf 6473 ‘cfv 6477 1oc1o 8373 No csur 27571 0s c0s 27759 M cmade 27776 O cold 27777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-1o 8380 df-2o 8381 df-no 27574 df-slt 27575 df-bday 27576 df-sslt 27714 df-scut 27716 df-0s 27761 df-made 27781 df-old 27782 |
| This theorem is referenced by: left1s 27833 right1s 27834 |
| Copyright terms: Public domain | W3C validator |