Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lss0v | Structured version Visualization version GIF version |
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
Ref | Expression |
---|---|
lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lss0v.o | ⊢ 0 = (0g‘𝑊) |
lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | eqid 2738 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | eqid 2738 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
6 | 2, 3, 4, 5 | lsslsp 20277 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅)) |
7 | 1, 6 | mp3an3 1449 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅)) |
8 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
9 | 8, 3 | lsp0 20271 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
11 | 2, 5 | lsslmod 20222 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
12 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
13 | 12, 4 | lsp0 20271 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
15 | 7, 10, 14 | 3eqtr3rd 2787 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
16 | 15 | unieqd 4853 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
17 | 12 | fvexi 6788 | . . 3 ⊢ 𝑍 ∈ V |
18 | 17 | unisn 4861 | . 2 ⊢ ∪ {𝑍} = 𝑍 |
19 | 8 | fvexi 6788 | . . 3 ⊢ 0 ∈ V |
20 | 19 | unisn 4861 | . 2 ⊢ ∪ { 0 } = 0 |
21 | 16, 18, 20 | 3eqtr3g 2801 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 ↾s cress 16941 0gc0g 17150 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-sca 16978 df-vsca 16979 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: phlssphl 20864 lcd0v 39625 |
Copyright terms: Public domain | W3C validator |