MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss0v Structured version   Visualization version   GIF version

Theorem lss0v 20193
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
lss0v.x 𝑋 = (𝑊s 𝑈)
lss0v.o 0 = (0g𝑊)
lss0v.z 𝑍 = (0g𝑋)
lss0v.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss0v ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑍 = 0 )

Proof of Theorem lss0v
StepHypRef Expression
1 0ss 4327 . . . . 5 ∅ ⊆ 𝑈
2 lss0v.x . . . . . 6 𝑋 = (𝑊s 𝑈)
3 eqid 2738 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
4 eqid 2738 . . . . . 6 (LSpan‘𝑋) = (LSpan‘𝑋)
5 lss0v.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
62, 3, 4, 5lsslsp 20192 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅))
71, 6mp3an3 1448 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅))
8 lss0v.o . . . . . 6 0 = (0g𝑊)
98, 3lsp0 20186 . . . . 5 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 })
109adantr 480 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑊)‘∅) = { 0 })
112, 5lsslmod 20137 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
12 lss0v.z . . . . . 6 𝑍 = (0g𝑋)
1312, 4lsp0 20186 . . . . 5 (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍})
1411, 13syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍})
157, 10, 143eqtr3rd 2787 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = { 0 })
1615unieqd 4850 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = { 0 })
1712fvexi 6770 . . 3 𝑍 ∈ V
1817unisn 4858 . 2 {𝑍} = 𝑍
198fvexi 6770 . . 3 0 ∈ V
2019unisn 4858 . 2 { 0 } = 0
2116, 18, 203eqtr3g 2802 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑍 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  c0 4253  {csn 4558   cuni 4836  cfv 6418  (class class class)co 7255  s cress 16867  0gc0g 17067  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149
This theorem is referenced by:  phlssphl  20776  lcd0v  39552
  Copyright terms: Public domain W3C validator