| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lss0v | Structured version Visualization version GIF version | ||
| Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
| Ref | Expression |
|---|---|
| lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lss0v.o | ⊢ 0 = (0g‘𝑊) |
| lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
| lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4371 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
| 2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
| 5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 6 | 2, 3, 4, 5 | lsslsp 20927 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
| 7 | 1, 6 | mp3an3 1452 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
| 8 | 2, 5 | lsslmod 20872 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
| 9 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
| 10 | 9, 4 | lsp0 20921 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
| 12 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 13 | 12, 3 | lsp0 20921 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
| 15 | 7, 11, 14 | 3eqtr3d 2773 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
| 16 | 15 | unieqd 4892 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
| 17 | 9 | fvexi 6879 | . . 3 ⊢ 𝑍 ∈ V |
| 18 | 17 | unisn 4898 | . 2 ⊢ ∪ {𝑍} = 𝑍 |
| 19 | 12 | fvexi 6879 | . . 3 ⊢ 0 ∈ V |
| 20 | 19 | unisn 4898 | . 2 ⊢ ∪ { 0 } = 0 |
| 21 | 16, 18, 20 | 3eqtr3g 2788 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ∅c0 4304 {csn 4597 ∪ cuni 4879 ‘cfv 6519 (class class class)co 7394 ↾s cress 17206 0gc0g 17408 LModclmod 20772 LSubSpclss 20843 LSpanclspn 20883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-sca 17242 df-vsca 17243 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-lmod 20774 df-lss 20844 df-lsp 20884 |
| This theorem is referenced by: phlssphl 21574 lcd0v 41597 |
| Copyright terms: Public domain | W3C validator |