![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lss0v | Structured version Visualization version GIF version |
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
Ref | Expression |
---|---|
lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lss0v.o | ⊢ 0 = (0g‘𝑊) |
lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4407 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | eqid 2736 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | eqid 2736 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
6 | 2, 3, 4, 5 | lsslsp 21037 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
7 | 1, 6 | mp3an3 1450 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
8 | 2, 5 | lsslmod 20982 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
9 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
10 | 9, 4 | lsp0 21031 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
12 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
13 | 12, 3 | lsp0 21031 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
15 | 7, 11, 14 | 3eqtr3d 2784 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
16 | 15 | unieqd 4926 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
17 | 9 | fvexi 6925 | . . 3 ⊢ 𝑍 ∈ V |
18 | 17 | unisn 4932 | . 2 ⊢ ∪ {𝑍} = 𝑍 |
19 | 12 | fvexi 6925 | . . 3 ⊢ 0 ∈ V |
20 | 19 | unisn 4932 | . 2 ⊢ ∪ { 0 } = 0 |
21 | 16, 18, 20 | 3eqtr3g 2799 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ⊆ wss 3964 ∅c0 4340 {csn 4632 ∪ cuni 4913 ‘cfv 6566 (class class class)co 7435 ↾s cress 17280 0gc0g 17492 LModclmod 20881 LSubSpclss 20953 LSpanclspn 20993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-sca 17320 df-vsca 17321 df-0g 17494 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18973 df-minusg 18974 df-sbg 18975 df-subg 19160 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-lmod 20883 df-lss 20954 df-lsp 20994 |
This theorem is referenced by: phlssphl 21701 lcd0v 41606 |
Copyright terms: Public domain | W3C validator |