| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lss0v | Structured version Visualization version GIF version | ||
| Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
| Ref | Expression |
|---|---|
| lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lss0v.o | ⊢ 0 = (0g‘𝑊) |
| lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
| lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4353 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
| 2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
| 5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 6 | 2, 3, 4, 5 | lsslsp 20937 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
| 7 | 1, 6 | mp3an3 1452 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = ((LSpan‘𝑊)‘∅)) |
| 8 | 2, 5 | lsslmod 20882 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
| 9 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
| 10 | 9, 4 | lsp0 20931 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
| 12 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 13 | 12, 3 | lsp0 20931 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
| 15 | 7, 11, 14 | 3eqtr3d 2772 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
| 16 | 15 | unieqd 4874 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
| 17 | 9 | fvexi 6840 | . . 3 ⊢ 𝑍 ∈ V |
| 18 | 17 | unisn 4880 | . 2 ⊢ ∪ {𝑍} = 𝑍 |
| 19 | 12 | fvexi 6840 | . . 3 ⊢ 0 ∈ V |
| 20 | 19 | unisn 4880 | . 2 ⊢ ∪ { 0 } = 0 |
| 21 | 16, 18, 20 | 3eqtr3g 2787 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 {csn 4579 ∪ cuni 4861 ‘cfv 6486 (class class class)co 7353 ↾s cress 17160 0gc0g 17362 LModclmod 20782 LSubSpclss 20853 LSpanclspn 20893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-sca 17196 df-vsca 17197 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-lmod 20784 df-lss 20854 df-lsp 20894 |
| This theorem is referenced by: phlssphl 21585 lcd0v 41610 |
| Copyright terms: Public domain | W3C validator |