![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinval | Structured version Visualization version GIF version |
Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
esumpfinval.a | β’ (π β π΄ β Fin) |
esumpfinval.b | β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) |
Ref | Expression |
---|---|
esumpfinval | β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33026 | . . . 4 β’ Ξ£*π β π΄π΅ = βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) | |
2 | xrge0base 32186 | . . . . . 6 β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | |
3 | xrge00 32187 | . . . . . 6 β’ 0 = (0gβ(β*π βΎs (0[,]+β))) | |
4 | xrge0cmn 20987 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β CMnd | |
5 | 4 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β CMnd) |
6 | xrge0tps 32922 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β TopSp | |
7 | 6 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β TopSp) |
8 | esumpfinval.a | . . . . . 6 β’ (π β π΄ β Fin) | |
9 | icossicc 13413 | . . . . . . . 8 β’ (0[,)+β) β (0[,]+β) | |
10 | esumpfinval.b | . . . . . . . 8 β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) | |
11 | 9, 10 | sselid 3981 | . . . . . . 7 β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) |
12 | 11 | fmpttd 7115 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,]+β)) |
13 | eqid 2733 | . . . . . . 7 β’ (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅) | |
14 | c0ex 11208 | . . . . . . . 8 β’ 0 β V | |
15 | 14 | a1i 11 | . . . . . . 7 β’ (π β 0 β V) |
16 | 13, 8, 10, 15 | fsuppmptdm 9374 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅) finSupp 0) |
17 | xrge0topn 32923 | . . . . . . 7 β’ (TopOpenβ(β*π βΎs (0[,]+β))) = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
18 | 17 | eqcomi 2742 | . . . . . 6 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) = (TopOpenβ(β*π βΎs (0[,]+β))) |
19 | xrhaus 22889 | . . . . . . . 8 β’ (ordTopβ β€ ) β Haus | |
20 | ovex 7442 | . . . . . . . 8 β’ (0[,]+β) β V | |
21 | resthaus 22872 | . . . . . . . 8 β’ (((ordTopβ β€ ) β Haus β§ (0[,]+β) β V) β ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus) | |
22 | 19, 20, 21 | mp2an 691 | . . . . . . 7 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus |
23 | 22 | a1i 11 | . . . . . 6 β’ (π β ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus) |
24 | 2, 3, 5, 7, 8, 12, 16, 18, 23 | haustsmsid 23645 | . . . . 5 β’ (π β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) = {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
25 | 24 | unieqd 4923 | . . . 4 β’ (π β βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) = βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
26 | 1, 25 | eqtrid 2785 | . . 3 β’ (π β Ξ£*π β π΄π΅ = βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
27 | ovex 7442 | . . . 4 β’ ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) β V | |
28 | 27 | unisn 4931 | . . 3 β’ βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))} = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) |
29 | 26, 28 | eqtrdi 2789 | . 2 β’ (π β Ξ£*π β π΄π΅ = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) |
30 | 10 | fmpttd 7115 | . . 3 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,)+β)) |
31 | esumpfinvallem 33072 | . . 3 β’ ((π΄ β Fin β§ (π β π΄ β¦ π΅):π΄βΆ(0[,)+β)) β (βfld Ξ£g (π β π΄ β¦ π΅)) = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) | |
32 | 8, 30, 31 | syl2anc 585 | . 2 β’ (π β (βfld Ξ£g (π β π΄ β¦ π΅)) = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) |
33 | rge0ssre 13433 | . . . . 5 β’ (0[,)+β) β β | |
34 | ax-resscn 11167 | . . . . 5 β’ β β β | |
35 | 33, 34 | sstri 3992 | . . . 4 β’ (0[,)+β) β β |
36 | 35, 10 | sselid 3981 | . . 3 β’ ((π β§ π β π΄) β π΅ β β) |
37 | 8, 36 | gsumfsum 21012 | . 2 β’ (π β (βfld Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅) |
38 | 29, 32, 37 | 3eqtr2d 2779 | 1 β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 {csn 4629 βͺ cuni 4909 β¦ cmpt 5232 βΆwf 6540 βcfv 6544 (class class class)co 7409 Fincfn 8939 βcc 11108 βcr 11109 0cc0 11110 +βcpnf 11245 β€ cle 11249 [,)cico 13326 [,]cicc 13327 Ξ£csu 15632 βΎs cress 17173 βΎt crest 17366 TopOpenctopn 17367 Ξ£g cgsu 17386 ordTopcordt 17445 β*π cxrs 17446 CMndccmn 19648 βfldccnfld 20944 TopSpctps 22434 Hauscha 22812 tsums ctsu 23630 Ξ£*cesum 33025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-xadd 13093 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-ordt 17447 df-xrs 17448 df-ps 18519 df-tsr 18520 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-cn 22731 df-haus 22819 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-tsms 23631 df-esum 33026 |
This theorem is referenced by: hasheuni 33083 esumcvg 33084 sibfof 33339 |
Copyright terms: Public domain | W3C validator |