![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinval | Structured version Visualization version GIF version |
Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
esumpfinval.a | β’ (π β π΄ β Fin) |
esumpfinval.b | β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) |
Ref | Expression |
---|---|
esumpfinval | β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33570 | . . . 4 β’ Ξ£*π β π΄π΅ = βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) | |
2 | xrge0base 32710 | . . . . . 6 β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | |
3 | xrge00 32711 | . . . . . 6 β’ 0 = (0gβ(β*π βΎs (0[,]+β))) | |
4 | xrge0cmn 21321 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β CMnd | |
5 | 4 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β CMnd) |
6 | xrge0tps 33466 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β TopSp | |
7 | 6 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β TopSp) |
8 | esumpfinval.a | . . . . . 6 β’ (π β π΄ β Fin) | |
9 | icossicc 13431 | . . . . . . . 8 β’ (0[,)+β) β (0[,]+β) | |
10 | esumpfinval.b | . . . . . . . 8 β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) | |
11 | 9, 10 | sselid 3976 | . . . . . . 7 β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) |
12 | 11 | fmpttd 7119 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,]+β)) |
13 | eqid 2727 | . . . . . . 7 β’ (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅) | |
14 | c0ex 11224 | . . . . . . . 8 β’ 0 β V | |
15 | 14 | a1i 11 | . . . . . . 7 β’ (π β 0 β V) |
16 | 13, 8, 10, 15 | fsuppmptdm 9388 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅) finSupp 0) |
17 | xrge0topn 33467 | . . . . . . 7 β’ (TopOpenβ(β*π βΎs (0[,]+β))) = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
18 | 17 | eqcomi 2736 | . . . . . 6 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) = (TopOpenβ(β*π βΎs (0[,]+β))) |
19 | xrhaus 23263 | . . . . . . . 8 β’ (ordTopβ β€ ) β Haus | |
20 | ovex 7447 | . . . . . . . 8 β’ (0[,]+β) β V | |
21 | resthaus 23246 | . . . . . . . 8 β’ (((ordTopβ β€ ) β Haus β§ (0[,]+β) β V) β ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus) | |
22 | 19, 20, 21 | mp2an 691 | . . . . . . 7 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus |
23 | 22 | a1i 11 | . . . . . 6 β’ (π β ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus) |
24 | 2, 3, 5, 7, 8, 12, 16, 18, 23 | haustsmsid 24019 | . . . . 5 β’ (π β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) = {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
25 | 24 | unieqd 4916 | . . . 4 β’ (π β βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) = βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
26 | 1, 25 | eqtrid 2779 | . . 3 β’ (π β Ξ£*π β π΄π΅ = βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
27 | ovex 7447 | . . . 4 β’ ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) β V | |
28 | 27 | unisn 4924 | . . 3 β’ βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))} = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) |
29 | 26, 28 | eqtrdi 2783 | . 2 β’ (π β Ξ£*π β π΄π΅ = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) |
30 | 10 | fmpttd 7119 | . . 3 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,)+β)) |
31 | esumpfinvallem 33616 | . . 3 β’ ((π΄ β Fin β§ (π β π΄ β¦ π΅):π΄βΆ(0[,)+β)) β (βfld Ξ£g (π β π΄ β¦ π΅)) = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) | |
32 | 8, 30, 31 | syl2anc 583 | . 2 β’ (π β (βfld Ξ£g (π β π΄ β¦ π΅)) = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) |
33 | rge0ssre 13451 | . . . . 5 β’ (0[,)+β) β β | |
34 | ax-resscn 11181 | . . . . 5 β’ β β β | |
35 | 33, 34 | sstri 3987 | . . . 4 β’ (0[,)+β) β β |
36 | 35, 10 | sselid 3976 | . . 3 β’ ((π β§ π β π΄) β π΅ β β) |
37 | 8, 36 | gsumfsum 21347 | . 2 β’ (π β (βfld Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅) |
38 | 29, 32, 37 | 3eqtr2d 2773 | 1 β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3469 {csn 4624 βͺ cuni 4903 β¦ cmpt 5225 βΆwf 6538 βcfv 6542 (class class class)co 7414 Fincfn 8953 βcc 11122 βcr 11123 0cc0 11124 +βcpnf 11261 β€ cle 11265 [,)cico 13344 [,]cicc 13345 Ξ£csu 15650 βΎs cress 17194 βΎt crest 17387 TopOpenctopn 17388 Ξ£g cgsu 17407 ordTopcordt 17466 β*π cxrs 17467 CMndccmn 19719 βfldccnfld 21259 TopSpctps 22808 Hauscha 23186 tsums ctsu 24004 Ξ£*cesum 33569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 ax-addf 11203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-fi 9420 df-sup 9451 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-rp 12993 df-xadd 13111 df-ico 13348 df-icc 13349 df-fz 13503 df-fzo 13646 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-sum 15651 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-starv 17233 df-tset 17237 df-ple 17238 df-ds 17240 df-unif 17241 df-rest 17389 df-topn 17390 df-0g 17408 df-gsum 17409 df-topgen 17410 df-ordt 17468 df-xrs 17469 df-ps 18543 df-tsr 18544 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-grp 18878 df-minusg 18879 df-cntz 19252 df-cmn 19721 df-abl 19722 df-mgp 20059 df-ur 20106 df-ring 20159 df-cring 20160 df-fbas 21256 df-fg 21257 df-cnfld 21260 df-top 22770 df-topon 22787 df-topsp 22809 df-bases 22823 df-cld 22897 df-ntr 22898 df-cls 22899 df-nei 22976 df-cn 23105 df-haus 23193 df-fil 23724 df-fm 23816 df-flim 23817 df-flf 23818 df-tsms 24005 df-esum 33570 |
This theorem is referenced by: hasheuni 33627 esumcvg 33628 sibfof 33883 |
Copyright terms: Public domain | W3C validator |