![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinval | Structured version Visualization version GIF version |
Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
esumpfinval.a | β’ (π β π΄ β Fin) |
esumpfinval.b | β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) |
Ref | Expression |
---|---|
esumpfinval | β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 33703 | . . . 4 β’ Ξ£*π β π΄π΅ = βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) | |
2 | xrge0base 32784 | . . . . . 6 β’ (0[,]+β) = (Baseβ(β*π βΎs (0[,]+β))) | |
3 | xrge00 32785 | . . . . . 6 β’ 0 = (0gβ(β*π βΎs (0[,]+β))) | |
4 | xrge0cmn 21343 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β CMnd | |
5 | 4 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β CMnd) |
6 | xrge0tps 33599 | . . . . . . 7 β’ (β*π βΎs (0[,]+β)) β TopSp | |
7 | 6 | a1i 11 | . . . . . 6 β’ (π β (β*π βΎs (0[,]+β)) β TopSp) |
8 | esumpfinval.a | . . . . . 6 β’ (π β π΄ β Fin) | |
9 | icossicc 13443 | . . . . . . . 8 β’ (0[,)+β) β (0[,]+β) | |
10 | esumpfinval.b | . . . . . . . 8 β’ ((π β§ π β π΄) β π΅ β (0[,)+β)) | |
11 | 9, 10 | sselid 3970 | . . . . . . 7 β’ ((π β§ π β π΄) β π΅ β (0[,]+β)) |
12 | 11 | fmpttd 7119 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,]+β)) |
13 | eqid 2725 | . . . . . . 7 β’ (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅) | |
14 | c0ex 11236 | . . . . . . . 8 β’ 0 β V | |
15 | 14 | a1i 11 | . . . . . . 7 β’ (π β 0 β V) |
16 | 13, 8, 10, 15 | fsuppmptdm 9397 | . . . . . 6 β’ (π β (π β π΄ β¦ π΅) finSupp 0) |
17 | xrge0topn 33600 | . . . . . . 7 β’ (TopOpenβ(β*π βΎs (0[,]+β))) = ((ordTopβ β€ ) βΎt (0[,]+β)) | |
18 | 17 | eqcomi 2734 | . . . . . 6 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) = (TopOpenβ(β*π βΎs (0[,]+β))) |
19 | xrhaus 23305 | . . . . . . . 8 β’ (ordTopβ β€ ) β Haus | |
20 | ovex 7448 | . . . . . . . 8 β’ (0[,]+β) β V | |
21 | resthaus 23288 | . . . . . . . 8 β’ (((ordTopβ β€ ) β Haus β§ (0[,]+β) β V) β ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus) | |
22 | 19, 20, 21 | mp2an 690 | . . . . . . 7 β’ ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus |
23 | 22 | a1i 11 | . . . . . 6 β’ (π β ((ordTopβ β€ ) βΎt (0[,]+β)) β Haus) |
24 | 2, 3, 5, 7, 8, 12, 16, 18, 23 | haustsmsid 24061 | . . . . 5 β’ (π β ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) = {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
25 | 24 | unieqd 4916 | . . . 4 β’ (π β βͺ ((β*π βΎs (0[,]+β)) tsums (π β π΄ β¦ π΅)) = βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
26 | 1, 25 | eqtrid 2777 | . . 3 β’ (π β Ξ£*π β π΄π΅ = βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))}) |
27 | ovex 7448 | . . . 4 β’ ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) β V | |
28 | 27 | unisn 4924 | . . 3 β’ βͺ {((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))} = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅)) |
29 | 26, 28 | eqtrdi 2781 | . 2 β’ (π β Ξ£*π β π΄π΅ = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) |
30 | 10 | fmpttd 7119 | . . 3 β’ (π β (π β π΄ β¦ π΅):π΄βΆ(0[,)+β)) |
31 | esumpfinvallem 33749 | . . 3 β’ ((π΄ β Fin β§ (π β π΄ β¦ π΅):π΄βΆ(0[,)+β)) β (βfld Ξ£g (π β π΄ β¦ π΅)) = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) | |
32 | 8, 30, 31 | syl2anc 582 | . 2 β’ (π β (βfld Ξ£g (π β π΄ β¦ π΅)) = ((β*π βΎs (0[,]+β)) Ξ£g (π β π΄ β¦ π΅))) |
33 | rge0ssre 13463 | . . . . 5 β’ (0[,)+β) β β | |
34 | ax-resscn 11193 | . . . . 5 β’ β β β | |
35 | 33, 34 | sstri 3982 | . . . 4 β’ (0[,)+β) β β |
36 | 35, 10 | sselid 3970 | . . 3 β’ ((π β§ π β π΄) β π΅ β β) |
37 | 8, 36 | gsumfsum 21369 | . 2 β’ (π β (βfld Ξ£g (π β π΄ β¦ π΅)) = Ξ£π β π΄ π΅) |
38 | 29, 32, 37 | 3eqtr2d 2771 | 1 β’ (π β Ξ£*π β π΄π΅ = Ξ£π β π΄ π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 {csn 4624 βͺ cuni 4903 β¦ cmpt 5226 βΆwf 6538 βcfv 6542 (class class class)co 7415 Fincfn 8960 βcc 11134 βcr 11135 0cc0 11136 +βcpnf 11273 β€ cle 11277 [,)cico 13356 [,]cicc 13357 Ξ£csu 15662 βΎs cress 17206 βΎt crest 17399 TopOpenctopn 17400 Ξ£g cgsu 17419 ordTopcordt 17478 β*π cxrs 17479 CMndccmn 19737 βfldccnfld 21281 TopSpctps 22850 Hauscha 23228 tsums ctsu 24046 Ξ£*cesum 33702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-fi 9432 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-rp 13005 df-xadd 13123 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-sum 15663 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-tset 17249 df-ple 17250 df-ds 17252 df-unif 17253 df-rest 17401 df-topn 17402 df-0g 17420 df-gsum 17421 df-topgen 17422 df-ordt 17480 df-xrs 17481 df-ps 18555 df-tsr 18556 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-ur 20124 df-ring 20177 df-cring 20178 df-fbas 21278 df-fg 21279 df-cnfld 21282 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-cn 23147 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tsms 24047 df-esum 33703 |
This theorem is referenced by: hasheuni 33760 esumcvg 33761 sibfof 34016 |
Copyright terms: Public domain | W3C validator |