Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinval Structured version   Visualization version   GIF version

Theorem esumpfinval 33617
Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinval.a (πœ‘ β†’ 𝐴 ∈ Fin)
esumpfinval.b ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpfinval (πœ‘ β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐡)
Distinct variable groups:   𝐴,π‘˜   πœ‘,π‘˜
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem esumpfinval
StepHypRef Expression
1 df-esum 33570 . . . 4 Ξ£*π‘˜ ∈ 𝐴𝐡 = βˆͺ ((ℝ*𝑠 β†Ύs (0[,]+∞)) tsums (π‘˜ ∈ 𝐴 ↦ 𝐡))
2 xrge0base 32710 . . . . . 6 (0[,]+∞) = (Baseβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))
3 xrge00 32711 . . . . . 6 0 = (0gβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))
4 xrge0cmn 21321 . . . . . . 7 (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ CMnd
54a1i 11 . . . . . 6 (πœ‘ β†’ (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ CMnd)
6 xrge0tps 33466 . . . . . . 7 (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ TopSp
76a1i 11 . . . . . 6 (πœ‘ β†’ (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ TopSp)
8 esumpfinval.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ Fin)
9 icossicc 13431 . . . . . . . 8 (0[,)+∞) βŠ† (0[,]+∞)
10 esumpfinval.b . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ (0[,)+∞))
119, 10sselid 3976 . . . . . . 7 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ (0[,]+∞))
1211fmpttd 7119 . . . . . 6 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):𝐴⟢(0[,]+∞))
13 eqid 2727 . . . . . . 7 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
14 c0ex 11224 . . . . . . . 8 0 ∈ V
1514a1i 11 . . . . . . 7 (πœ‘ β†’ 0 ∈ V)
1613, 8, 10, 15fsuppmptdm 9388 . . . . . 6 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡) finSupp 0)
17 xrge0topn 33467 . . . . . . 7 (TopOpenβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞))) = ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞))
1817eqcomi 2736 . . . . . 6 ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) = (TopOpenβ€˜(ℝ*𝑠 β†Ύs (0[,]+∞)))
19 xrhaus 23263 . . . . . . . 8 (ordTopβ€˜ ≀ ) ∈ Haus
20 ovex 7447 . . . . . . . 8 (0[,]+∞) ∈ V
21 resthaus 23246 . . . . . . . 8 (((ordTopβ€˜ ≀ ) ∈ Haus ∧ (0[,]+∞) ∈ V) β†’ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ∈ Haus)
2219, 20, 21mp2an 691 . . . . . . 7 ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ∈ Haus
2322a1i 11 . . . . . 6 (πœ‘ β†’ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ∈ Haus)
242, 3, 5, 7, 8, 12, 16, 18, 23haustsmsid 24019 . . . . 5 (πœ‘ β†’ ((ℝ*𝑠 β†Ύs (0[,]+∞)) tsums (π‘˜ ∈ 𝐴 ↦ 𝐡)) = {((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡))})
2524unieqd 4916 . . . 4 (πœ‘ β†’ βˆͺ ((ℝ*𝑠 β†Ύs (0[,]+∞)) tsums (π‘˜ ∈ 𝐴 ↦ 𝐡)) = βˆͺ {((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡))})
261, 25eqtrid 2779 . . 3 (πœ‘ β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = βˆͺ {((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡))})
27 ovex 7447 . . . 4 ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) ∈ V
2827unisn 4924 . . 3 βˆͺ {((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡))} = ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡))
2926, 28eqtrdi 2783 . 2 (πœ‘ β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)))
3010fmpttd 7119 . . 3 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):𝐴⟢(0[,)+∞))
31 esumpfinvallem 33616 . . 3 ((𝐴 ∈ Fin ∧ (π‘˜ ∈ 𝐴 ↦ 𝐡):𝐴⟢(0[,)+∞)) β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)))
328, 30, 31syl2anc 583 . 2 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = ((ℝ*𝑠 β†Ύs (0[,]+∞)) Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)))
33 rge0ssre 13451 . . . . 5 (0[,)+∞) βŠ† ℝ
34 ax-resscn 11181 . . . . 5 ℝ βŠ† β„‚
3533, 34sstri 3987 . . . 4 (0[,)+∞) βŠ† β„‚
3635, 10sselid 3976 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
378, 36gsumfsum 21347 . 2 (πœ‘ β†’ (β„‚fld Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝐡)) = Ξ£π‘˜ ∈ 𝐴 𝐡)
3829, 32, 373eqtr2d 2773 1 (πœ‘ β†’ Ξ£*π‘˜ ∈ 𝐴𝐡 = Ξ£π‘˜ ∈ 𝐴 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  Vcvv 3469  {csn 4624  βˆͺ cuni 4903   ↦ cmpt 5225  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  Fincfn 8953  β„‚cc 11122  β„cr 11123  0cc0 11124  +∞cpnf 11261   ≀ cle 11265  [,)cico 13344  [,]cicc 13345  Ξ£csu 15650   β†Ύs cress 17194   β†Ύt crest 17387  TopOpenctopn 17388   Ξ£g cgsu 17407  ordTopcordt 17466  β„*𝑠cxrs 17467  CMndccmn 19719  β„‚fldccnfld 21259  TopSpctps 22808  Hauscha 23186   tsums ctsu 24004  Ξ£*cesum 33569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-rp 12993  df-xadd 13111  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-seq 13985  df-exp 14045  df-hash 14308  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-clim 15450  df-sum 15651  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-ordt 17468  df-xrs 17469  df-ps 18543  df-tsr 18544  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-submnd 18726  df-grp 18878  df-minusg 18879  df-cntz 19252  df-cmn 19721  df-abl 19722  df-mgp 20059  df-ur 20106  df-ring 20159  df-cring 20160  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-cn 23105  df-haus 23193  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-tsms 24005  df-esum 33570
This theorem is referenced by:  hasheuni  33627  esumcvg  33628  sibfof  33883
  Copyright terms: Public domain W3C validator