Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinval | Structured version Visualization version GIF version |
Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
esumpfinval.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
esumpfinval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
esumpfinval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 31896 | . . . 4 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | xrge0base 31196 | . . . . . 6 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
3 | xrge00 31197 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
4 | xrge0cmn 20552 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
6 | xrge0tps 31794 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
8 | esumpfinval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
9 | icossicc 13097 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
10 | esumpfinval.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
11 | 9, 10 | sselid 3915 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
12 | 11 | fmpttd 6971 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
13 | eqid 2738 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
14 | c0ex 10900 | . . . . . . . 8 ⊢ 0 ∈ V | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
16 | 13, 8, 10, 15 | fsuppmptdm 9069 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
17 | xrge0topn 31795 | . . . . . . 7 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
18 | 17 | eqcomi 2747 | . . . . . 6 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
19 | xrhaus 22444 | . . . . . . . 8 ⊢ (ordTop‘ ≤ ) ∈ Haus | |
20 | ovex 7288 | . . . . . . . 8 ⊢ (0[,]+∞) ∈ V | |
21 | resthaus 22427 | . . . . . . . 8 ⊢ (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) | |
22 | 19, 20, 21 | mp2an 688 | . . . . . . 7 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) |
24 | 2, 3, 5, 7, 8, 12, 16, 18, 23 | haustsmsid 23200 | . . . . 5 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
25 | 24 | unieqd 4850 | . . . 4 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
26 | 1, 25 | syl5eq 2791 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
27 | ovex 7288 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
28 | 27 | unisn 4858 | . . 3 ⊢ ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))} = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) |
29 | 26, 28 | eqtrdi 2795 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
30 | 10 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
31 | esumpfinvallem 31942 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
32 | 8, 30, 31 | syl2anc 583 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
33 | rge0ssre 13117 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
34 | ax-resscn 10859 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
35 | 33, 34 | sstri 3926 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
36 | 35, 10 | sselid 3915 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
37 | 8, 36 | gsumfsum 20577 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
38 | 29, 32, 37 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 [,]cicc 13011 Σcsu 15325 ↾s cress 16867 ↾t crest 17048 TopOpenctopn 17049 Σg cgsu 17068 ordTopcordt 17127 ℝ*𝑠cxrs 17128 CMndccmn 19301 ℂfldccnfld 20510 TopSpctps 21989 Hauscha 22367 tsums ctsu 23185 Σ*cesum 31895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 |
This theorem is referenced by: hasheuni 31953 esumcvg 31954 sibfof 32207 |
Copyright terms: Public domain | W3C validator |