MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Structured version   Visualization version   GIF version

Theorem acsmapd 18455
Description: In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 18453 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmapd.2 𝑁 = (mrCls‘𝐴)
acsmapd.3 (𝜑𝑆𝑋)
acsmapd.4 (𝜑𝑇 ⊆ (𝑁𝑆))
Assertion
Ref Expression
acsmapd (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Distinct variable groups:   𝑇,𝑓   𝜑,𝑓   𝑆,𝑓   𝑓,𝑁
Allowed substitution hints:   𝐴(𝑓)   𝑋(𝑓)

Proof of Theorem acsmapd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑆))
2 fvex 6830 . . . . 5 (𝑁𝑆) ∈ V
32ssex 5254 . . . 4 (𝑇 ⊆ (𝑁𝑆) → 𝑇 ∈ V)
41, 3syl 17 . . 3 (𝜑𝑇 ∈ V)
51sseld 3928 . . . . 5 (𝜑 → (𝑥𝑇𝑥 ∈ (𝑁𝑆)))
6 acsmapd.1 . . . . . 6 (𝜑𝐴 ∈ (ACS‘𝑋))
7 acsmapd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
8 acsmapd.3 . . . . . 6 (𝜑𝑆𝑋)
96, 7, 8acsficl2d 18453 . . . . 5 (𝜑 → (𝑥 ∈ (𝑁𝑆) ↔ ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
105, 9sylibd 239 . . . 4 (𝜑 → (𝑥𝑇 → ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
1110ralrimiv 3123 . . 3 (𝜑 → ∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦))
12 fveq2 6817 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑁𝑦) = (𝑁‘(𝑓𝑥)))
1312eleq2d 2817 . . . 4 (𝑦 = (𝑓𝑥) → (𝑥 ∈ (𝑁𝑦) ↔ 𝑥 ∈ (𝑁‘(𝑓𝑥))))
1413ac6sg 10374 . . 3 (𝑇 ∈ V → (∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))))
154, 11, 14sylc 65 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
16 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
17 nfv 1915 . . . . . . . 8 𝑥𝜑
18 nfv 1915 . . . . . . . . 9 𝑥 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)
19 nfra1 3256 . . . . . . . . 9 𝑥𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))
2018, 19nfan 1900 . . . . . . . 8 𝑥(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
2117, 20nfan 1900 . . . . . . 7 𝑥(𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
226ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (ACS‘𝑋))
2322acsmred 17557 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (Moore‘𝑋))
24 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
2524ffnd 6647 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓 Fn 𝑇)
26 fnfvelrn 7008 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑇𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2725, 26sylancom 588 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2827snssd 4756 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
2928unissd 4864 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
30 frn 6653 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin))
3130unissd 4864 . . . . . . . . . . . . 13 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 (𝒫 𝑆 ∩ Fin))
32 unifpw 9234 . . . . . . . . . . . . 13 (𝒫 𝑆 ∩ Fin) = 𝑆
3331, 32sseqtrdi 3970 . . . . . . . . . . . 12 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓𝑆)
3424, 33syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑆)
358ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑆𝑋)
3634, 35sstrd 3940 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑋)
3723, 7, 29, 36mrcssd 17525 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑁 {(𝑓𝑥)}) ⊆ (𝑁 ran 𝑓))
38 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
3938r19.21bi 3224 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁‘(𝑓𝑥)))
40 fvex 6830 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
4140unisn 4873 . . . . . . . . . . 11 {(𝑓𝑥)} = (𝑓𝑥)
4241fveq2i 6820 . . . . . . . . . 10 (𝑁 {(𝑓𝑥)}) = (𝑁‘(𝑓𝑥))
4339, 42eleqtrrdi 2842 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 {(𝑓𝑥)}))
4437, 43sseldd 3930 . . . . . . . 8 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 ran 𝑓))
4544ex 412 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4621, 45alrimi 2216 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
47 df-ss 3914 . . . . . 6 (𝑇 ⊆ (𝑁 ran 𝑓) ↔ ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4846, 47sylibr 234 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑇 ⊆ (𝑁 ran 𝑓))
4916, 48jca 511 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
5049ex 412 . . 3 (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5150eximdv 1918 . 2 (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5215, 51mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4545  {csn 4571   cuni 4854  ran crn 5612   Fn wfn 6471  wf 6472  cfv 6476  Fincfn 8864  mrClscmrc 17480  ACScacs 17482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-reg 9473  ax-inf2 9526  ax-ac2 10349  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-r1 9652  df-rank 9653  df-card 9827  df-ac 10002  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-tset 17175  df-ple 17176  df-ocomp 17177  df-mre 17483  df-mrc 17484  df-acs 17486  df-proset 18195  df-drs 18196  df-poset 18214  df-ipo 18429
This theorem is referenced by:  acsmap2d  18456
  Copyright terms: Public domain W3C validator