MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Structured version   Visualization version   GIF version

Theorem acsmapd 18624
Description: In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 18622 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmapd.2 𝑁 = (mrCls‘𝐴)
acsmapd.3 (𝜑𝑆𝑋)
acsmapd.4 (𝜑𝑇 ⊆ (𝑁𝑆))
Assertion
Ref Expression
acsmapd (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Distinct variable groups:   𝑇,𝑓   𝜑,𝑓   𝑆,𝑓   𝑓,𝑁
Allowed substitution hints:   𝐴(𝑓)   𝑋(𝑓)

Proof of Theorem acsmapd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑆))
2 fvex 6933 . . . . 5 (𝑁𝑆) ∈ V
32ssex 5339 . . . 4 (𝑇 ⊆ (𝑁𝑆) → 𝑇 ∈ V)
41, 3syl 17 . . 3 (𝜑𝑇 ∈ V)
51sseld 4007 . . . . 5 (𝜑 → (𝑥𝑇𝑥 ∈ (𝑁𝑆)))
6 acsmapd.1 . . . . . 6 (𝜑𝐴 ∈ (ACS‘𝑋))
7 acsmapd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
8 acsmapd.3 . . . . . 6 (𝜑𝑆𝑋)
96, 7, 8acsficl2d 18622 . . . . 5 (𝜑 → (𝑥 ∈ (𝑁𝑆) ↔ ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
105, 9sylibd 239 . . . 4 (𝜑 → (𝑥𝑇 → ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
1110ralrimiv 3151 . . 3 (𝜑 → ∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦))
12 fveq2 6920 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑁𝑦) = (𝑁‘(𝑓𝑥)))
1312eleq2d 2830 . . . 4 (𝑦 = (𝑓𝑥) → (𝑥 ∈ (𝑁𝑦) ↔ 𝑥 ∈ (𝑁‘(𝑓𝑥))))
1413ac6sg 10557 . . 3 (𝑇 ∈ V → (∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))))
154, 11, 14sylc 65 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
16 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
17 nfv 1913 . . . . . . . 8 𝑥𝜑
18 nfv 1913 . . . . . . . . 9 𝑥 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)
19 nfra1 3290 . . . . . . . . 9 𝑥𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))
2018, 19nfan 1898 . . . . . . . 8 𝑥(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
2117, 20nfan 1898 . . . . . . 7 𝑥(𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
226ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (ACS‘𝑋))
2322acsmred 17714 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (Moore‘𝑋))
24 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
2524ffnd 6748 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓 Fn 𝑇)
26 fnfvelrn 7114 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑇𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2725, 26sylancom 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2827snssd 4834 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
2928unissd 4941 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
30 frn 6754 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin))
3130unissd 4941 . . . . . . . . . . . . 13 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 (𝒫 𝑆 ∩ Fin))
32 unifpw 9425 . . . . . . . . . . . . 13 (𝒫 𝑆 ∩ Fin) = 𝑆
3331, 32sseqtrdi 4059 . . . . . . . . . . . 12 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓𝑆)
3424, 33syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑆)
358ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑆𝑋)
3634, 35sstrd 4019 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑋)
3723, 7, 29, 36mrcssd 17682 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑁 {(𝑓𝑥)}) ⊆ (𝑁 ran 𝑓))
38 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
3938r19.21bi 3257 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁‘(𝑓𝑥)))
40 fvex 6933 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
4140unisn 4950 . . . . . . . . . . 11 {(𝑓𝑥)} = (𝑓𝑥)
4241fveq2i 6923 . . . . . . . . . 10 (𝑁 {(𝑓𝑥)}) = (𝑁‘(𝑓𝑥))
4339, 42eleqtrrdi 2855 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 {(𝑓𝑥)}))
4437, 43sseldd 4009 . . . . . . . 8 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 ran 𝑓))
4544ex 412 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4621, 45alrimi 2214 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
47 df-ss 3993 . . . . . 6 (𝑇 ⊆ (𝑁 ran 𝑓) ↔ ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4846, 47sylibr 234 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑇 ⊆ (𝑁 ran 𝑓))
4916, 48jca 511 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
5049ex 412 . . 3 (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5150eximdv 1916 . 2 (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5215, 51mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  Fincfn 9003  mrClscmrc 17641  ACScacs 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598
This theorem is referenced by:  acsmap2d  18625
  Copyright terms: Public domain W3C validator