MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmapd Structured version   Visualization version   GIF version

Theorem acsmapd 18270
Description: In an algebraic closure system, if 𝑇 is contained in the closure of 𝑆, there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that the closure of ran 𝑓 contains 𝑇. This is proven by applying acsficl2d 18268 to each element of 𝑇. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmapd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmapd.2 𝑁 = (mrCls‘𝐴)
acsmapd.3 (𝜑𝑆𝑋)
acsmapd.4 (𝜑𝑇 ⊆ (𝑁𝑆))
Assertion
Ref Expression
acsmapd (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Distinct variable groups:   𝑇,𝑓   𝜑,𝑓   𝑆,𝑓   𝑓,𝑁
Allowed substitution hints:   𝐴(𝑓)   𝑋(𝑓)

Proof of Theorem acsmapd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmapd.4 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑆))
2 fvex 6784 . . . . 5 (𝑁𝑆) ∈ V
32ssex 5249 . . . 4 (𝑇 ⊆ (𝑁𝑆) → 𝑇 ∈ V)
41, 3syl 17 . . 3 (𝜑𝑇 ∈ V)
51sseld 3925 . . . . 5 (𝜑 → (𝑥𝑇𝑥 ∈ (𝑁𝑆)))
6 acsmapd.1 . . . . . 6 (𝜑𝐴 ∈ (ACS‘𝑋))
7 acsmapd.2 . . . . . 6 𝑁 = (mrCls‘𝐴)
8 acsmapd.3 . . . . . 6 (𝜑𝑆𝑋)
96, 7, 8acsficl2d 18268 . . . . 5 (𝜑 → (𝑥 ∈ (𝑁𝑆) ↔ ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
105, 9sylibd 238 . . . 4 (𝜑 → (𝑥𝑇 → ∃𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦)))
1110ralrimiv 3109 . . 3 (𝜑 → ∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦))
12 fveq2 6771 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑁𝑦) = (𝑁‘(𝑓𝑥)))
1312eleq2d 2826 . . . 4 (𝑦 = (𝑓𝑥) → (𝑥 ∈ (𝑁𝑦) ↔ 𝑥 ∈ (𝑁‘(𝑓𝑥))))
1413ac6sg 10245 . . 3 (𝑇 ∈ V → (∀𝑥𝑇𝑦 ∈ (𝒫 𝑆 ∩ Fin)𝑥 ∈ (𝑁𝑦) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))))
154, 11, 14sylc 65 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
16 simprl 768 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
17 nfv 1921 . . . . . . . 8 𝑥𝜑
18 nfv 1921 . . . . . . . . 9 𝑥 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)
19 nfra1 3145 . . . . . . . . 9 𝑥𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))
2018, 19nfan 1906 . . . . . . . 8 𝑥(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
2117, 20nfan 1906 . . . . . . 7 𝑥(𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))))
226ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (ACS‘𝑋))
2322acsmred 17363 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝐴 ∈ (Moore‘𝑋))
24 simplrl 774 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
2524ffnd 6599 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑓 Fn 𝑇)
26 fnfvelrn 6955 . . . . . . . . . . . . 13 ((𝑓 Fn 𝑇𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2725, 26sylancom 588 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑓𝑥) ∈ ran 𝑓)
2827snssd 4748 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
2928unissd 4855 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → {(𝑓𝑥)} ⊆ ran 𝑓)
30 frn 6605 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin))
3130unissd 4855 . . . . . . . . . . . . 13 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 (𝒫 𝑆 ∩ Fin))
32 unifpw 9100 . . . . . . . . . . . . 13 (𝒫 𝑆 ∩ Fin) = 𝑆
3331, 32sseqtrdi 3976 . . . . . . . . . . . 12 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓𝑆)
3424, 33syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑆)
358ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑆𝑋)
3634, 35sstrd 3936 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → ran 𝑓𝑋)
3723, 7, 29, 36mrcssd 17331 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → (𝑁 {(𝑓𝑥)}) ⊆ (𝑁 ran 𝑓))
38 simprr 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))
3938r19.21bi 3135 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁‘(𝑓𝑥)))
40 fvex 6784 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
4140unisn 4867 . . . . . . . . . . 11 {(𝑓𝑥)} = (𝑓𝑥)
4241fveq2i 6774 . . . . . . . . . 10 (𝑁 {(𝑓𝑥)}) = (𝑁‘(𝑓𝑥))
4339, 42eleqtrrdi 2852 . . . . . . . . 9 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 {(𝑓𝑥)}))
4437, 43sseldd 3927 . . . . . . . 8 (((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑁 ran 𝑓))
4544ex 413 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4621, 45alrimi 2210 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
47 dfss2 3912 . . . . . 6 (𝑇 ⊆ (𝑁 ran 𝑓) ↔ ∀𝑥(𝑥𝑇𝑥 ∈ (𝑁 ran 𝑓)))
4846, 47sylibr 233 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → 𝑇 ⊆ (𝑁 ran 𝑓))
4916, 48jca 512 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥)))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
5049ex 413 . . 3 (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5150eximdv 1924 . 2 (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ ∀𝑥𝑇 𝑥 ∈ (𝑁‘(𝑓𝑥))) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))))
5215, 51mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1540   = wceq 1542  wex 1786  wcel 2110  wral 3066  wrex 3067  Vcvv 3431  cin 3891  wss 3892  𝒫 cpw 4539  {csn 4567   cuni 4845  ran crn 5591   Fn wfn 6427  wf 6428  cfv 6432  Fincfn 8716  mrClscmrc 17290  ACScacs 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-reg 9329  ax-inf2 9377  ax-ac2 10220  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-r1 9523  df-rank 9524  df-card 9698  df-ac 9873  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-struct 16846  df-slot 16881  df-ndx 16893  df-base 16911  df-tset 16979  df-ple 16980  df-ocomp 16981  df-mre 17293  df-mrc 17294  df-acs 17296  df-proset 18011  df-drs 18012  df-poset 18029  df-ipo 18244
This theorem is referenced by:  acsmap2d  18271
  Copyright terms: Public domain W3C validator