MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem1 Structured version   Visualization version   GIF version

Theorem jensenlem1 27048
Description: Lemma for jensen 27050. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
Assertion
Ref Expression
jensenlem1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem1
StepHypRef Expression
1 cnfldbas 21391 . . . 4 ℂ = (Base‘ℂfld)
2 cnfldadd 21393 . . . 4 + = (+g‘ℂfld)
3 cnring 21426 . . . . 5 fld ∈ Ring
4 ringcmn 20305 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 (𝜑 → ℂfld ∈ CMnd)
6 jensen.4 . . . . 5 (𝜑𝐴 ∈ Fin)
7 jensenlem.2 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
87unssad 4216 . . . . 5 (𝜑𝐵𝐴)
96, 8ssfid 9329 . . . 4 (𝜑𝐵 ∈ Fin)
10 rge0ssre 13516 . . . . . 6 (0[,)+∞) ⊆ ℝ
11 ax-resscn 11241 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstri 4018 . . . . 5 (0[,)+∞) ⊆ ℂ
138sselda 4008 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
14 jensen.5 . . . . . . 7 (𝜑𝑇:𝐴⟶(0[,)+∞))
1514ffvelcdmda 7118 . . . . . 6 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
1613, 15syldan 590 . . . . 5 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
1712, 16sselid 4006 . . . 4 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
187unssbd 4217 . . . . 5 (𝜑 → {𝑧} ⊆ 𝐴)
19 vex 3492 . . . . . 6 𝑧 ∈ V
2019snss 4810 . . . . 5 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
2118, 20sylibr 234 . . . 4 (𝜑𝑧𝐴)
22 jensenlem.1 . . . 4 (𝜑 → ¬ 𝑧𝐵)
2314, 21ffvelcdmd 7119 . . . . 5 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
2412, 23sselid 4006 . . . 4 (𝜑 → (𝑇𝑧) ∈ ℂ)
25 fveq2 6920 . . . 4 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
261, 2, 5, 9, 17, 21, 22, 24, 25gsumunsn 20002 . . 3 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
2714, 7feqresmpt 6991 . . . 4 (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥)))
2827oveq2d 7464 . . 3 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))))
2914, 8feqresmpt 6991 . . . . 5 (𝜑 → (𝑇𝐵) = (𝑥𝐵 ↦ (𝑇𝑥)))
3029oveq2d 7464 . . . 4 (𝜑 → (ℂfld Σg (𝑇𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))))
3130oveq1d 7463 . . 3 (𝜑 → ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
3226, 28, 313eqtr4d 2790 . 2 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)))
33 jensenlem.l . 2 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
34 jensenlem.s . . 3 𝑆 = (ℂfld Σg (𝑇𝐵))
3534oveq1i 7458 . 2 (𝑆 + (𝑇𝑧)) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧))
3632, 33, 353eqtr4g 2805 1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  cmin 11520  [,)cico 13409  [,]cicc 13410   Σg cgsu 17500  CMndccmn 19822  Ringcrg 20260  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-cnfld 21388
This theorem is referenced by:  jensenlem2  27049
  Copyright terms: Public domain W3C validator