![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version |
Description: Lemma for jensen 26490. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
jensen.1 | β’ (π β π· β β) |
jensen.2 | β’ (π β πΉ:π·βΆβ) |
jensen.3 | β’ ((π β§ (π β π· β§ π β π·)) β (π[,]π) β π·) |
jensen.4 | β’ (π β π΄ β Fin) |
jensen.5 | β’ (π β π:π΄βΆ(0[,)+β)) |
jensen.6 | β’ (π β π:π΄βΆπ·) |
jensen.7 | β’ (π β 0 < (βfld Ξ£g π)) |
jensen.8 | β’ ((π β§ (π₯ β π· β§ π¦ β π· β§ π‘ β (0[,]1))) β (πΉβ((π‘ Β· π₯) + ((1 β π‘) Β· π¦))) β€ ((π‘ Β· (πΉβπ₯)) + ((1 β π‘) Β· (πΉβπ¦)))) |
jensenlem.1 | β’ (π β Β¬ π§ β π΅) |
jensenlem.2 | β’ (π β (π΅ βͺ {π§}) β π΄) |
jensenlem.s | β’ π = (βfld Ξ£g (π βΎ π΅)) |
jensenlem.l | β’ πΏ = (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) |
Ref | Expression |
---|---|
jensenlem1 | β’ (π β πΏ = (π + (πβπ§))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20947 | . . . 4 β’ β = (Baseββfld) | |
2 | cnfldadd 20948 | . . . 4 β’ + = (+gββfld) | |
3 | cnring 20966 | . . . . 5 β’ βfld β Ring | |
4 | ringcmn 20098 | . . . . 5 β’ (βfld β Ring β βfld β CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 β’ (π β βfld β CMnd) |
6 | jensen.4 | . . . . 5 β’ (π β π΄ β Fin) | |
7 | jensenlem.2 | . . . . . 6 β’ (π β (π΅ βͺ {π§}) β π΄) | |
8 | 7 | unssad 4187 | . . . . 5 β’ (π β π΅ β π΄) |
9 | 6, 8 | ssfid 9266 | . . . 4 β’ (π β π΅ β Fin) |
10 | rge0ssre 13432 | . . . . . 6 β’ (0[,)+β) β β | |
11 | ax-resscn 11166 | . . . . . 6 β’ β β β | |
12 | 10, 11 | sstri 3991 | . . . . 5 β’ (0[,)+β) β β |
13 | 8 | sselda 3982 | . . . . . 6 β’ ((π β§ π₯ β π΅) β π₯ β π΄) |
14 | jensen.5 | . . . . . . 7 β’ (π β π:π΄βΆ(0[,)+β)) | |
15 | 14 | ffvelcdmda 7086 | . . . . . 6 β’ ((π β§ π₯ β π΄) β (πβπ₯) β (0[,)+β)) |
16 | 13, 15 | syldan 591 | . . . . 5 β’ ((π β§ π₯ β π΅) β (πβπ₯) β (0[,)+β)) |
17 | 12, 16 | sselid 3980 | . . . 4 β’ ((π β§ π₯ β π΅) β (πβπ₯) β β) |
18 | 7 | unssbd 4188 | . . . . 5 β’ (π β {π§} β π΄) |
19 | vex 3478 | . . . . . 6 β’ π§ β V | |
20 | 19 | snss 4789 | . . . . 5 β’ (π§ β π΄ β {π§} β π΄) |
21 | 18, 20 | sylibr 233 | . . . 4 β’ (π β π§ β π΄) |
22 | jensenlem.1 | . . . 4 β’ (π β Β¬ π§ β π΅) | |
23 | 14, 21 | ffvelcdmd 7087 | . . . . 5 β’ (π β (πβπ§) β (0[,)+β)) |
24 | 12, 23 | sselid 3980 | . . . 4 β’ (π β (πβπ§) β β) |
25 | fveq2 6891 | . . . 4 β’ (π₯ = π§ β (πβπ₯) = (πβπ§)) | |
26 | 1, 2, 5, 9, 17, 21, 22, 24, 25 | gsumunsn 19827 | . . 3 β’ (π β (βfld Ξ£g (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯))) = ((βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯))) + (πβπ§))) |
27 | 14, 7 | feqresmpt 6961 | . . . 4 β’ (π β (π βΎ (π΅ βͺ {π§})) = (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯))) |
28 | 27 | oveq2d 7424 | . . 3 β’ (π β (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) = (βfld Ξ£g (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯)))) |
29 | 14, 8 | feqresmpt 6961 | . . . . 5 β’ (π β (π βΎ π΅) = (π₯ β π΅ β¦ (πβπ₯))) |
30 | 29 | oveq2d 7424 | . . . 4 β’ (π β (βfld Ξ£g (π βΎ π΅)) = (βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯)))) |
31 | 30 | oveq1d 7423 | . . 3 β’ (π β ((βfld Ξ£g (π βΎ π΅)) + (πβπ§)) = ((βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯))) + (πβπ§))) |
32 | 26, 28, 31 | 3eqtr4d 2782 | . 2 β’ (π β (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) = ((βfld Ξ£g (π βΎ π΅)) + (πβπ§))) |
33 | jensenlem.l | . 2 β’ πΏ = (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) | |
34 | jensenlem.s | . . 3 β’ π = (βfld Ξ£g (π βΎ π΅)) | |
35 | 34 | oveq1i 7418 | . 2 β’ (π + (πβπ§)) = ((βfld Ξ£g (π βΎ π΅)) + (πβπ§)) |
36 | 32, 33, 35 | 3eqtr4g 2797 | 1 β’ (π β πΏ = (π + (πβπ§))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βͺ cun 3946 β wss 3948 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7408 Fincfn 8938 βcc 11107 βcr 11108 0cc0 11109 1c1 11110 + caddc 11112 Β· cmul 11114 +βcpnf 11244 < clt 11247 β€ cle 11248 β cmin 11443 [,)cico 13325 [,]cicc 13326 Ξ£g cgsu 17385 CMndccmn 19647 Ringcrg 20055 βfldccnfld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-ico 13329 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-cnfld 20944 |
This theorem is referenced by: jensenlem2 26489 |
Copyright terms: Public domain | W3C validator |