MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem1 Structured version   Visualization version   GIF version

Theorem jensenlem1 26924
Description: Lemma for jensen 26926. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
Assertion
Ref Expression
jensenlem1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem1
StepHypRef Expression
1 cnfldbas 21295 . . . 4 ℂ = (Base‘ℂfld)
2 cnfldadd 21297 . . . 4 + = (+g‘ℂfld)
3 cnring 21327 . . . . 5 fld ∈ Ring
4 ringcmn 20200 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 (𝜑 → ℂfld ∈ CMnd)
6 jensen.4 . . . . 5 (𝜑𝐴 ∈ Fin)
7 jensenlem.2 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
87unssad 4140 . . . . 5 (𝜑𝐵𝐴)
96, 8ssfid 9153 . . . 4 (𝜑𝐵 ∈ Fin)
10 rge0ssre 13356 . . . . . 6 (0[,)+∞) ⊆ ℝ
11 ax-resscn 11063 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstri 3939 . . . . 5 (0[,)+∞) ⊆ ℂ
138sselda 3929 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
14 jensen.5 . . . . . . 7 (𝜑𝑇:𝐴⟶(0[,)+∞))
1514ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
1613, 15syldan 591 . . . . 5 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
1712, 16sselid 3927 . . . 4 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
187unssbd 4141 . . . . 5 (𝜑 → {𝑧} ⊆ 𝐴)
19 vex 3440 . . . . . 6 𝑧 ∈ V
2019snss 4734 . . . . 5 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
2118, 20sylibr 234 . . . 4 (𝜑𝑧𝐴)
22 jensenlem.1 . . . 4 (𝜑 → ¬ 𝑧𝐵)
2314, 21ffvelcdmd 7018 . . . . 5 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
2412, 23sselid 3927 . . . 4 (𝜑 → (𝑇𝑧) ∈ ℂ)
25 fveq2 6822 . . . 4 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
261, 2, 5, 9, 17, 21, 22, 24, 25gsumunsn 19872 . . 3 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
2714, 7feqresmpt 6891 . . . 4 (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥)))
2827oveq2d 7362 . . 3 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))))
2914, 8feqresmpt 6891 . . . . 5 (𝜑 → (𝑇𝐵) = (𝑥𝐵 ↦ (𝑇𝑥)))
3029oveq2d 7362 . . . 4 (𝜑 → (ℂfld Σg (𝑇𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))))
3130oveq1d 7361 . . 3 (𝜑 → ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
3226, 28, 313eqtr4d 2776 . 2 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)))
33 jensenlem.l . 2 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
34 jensenlem.s . . 3 𝑆 = (ℂfld Σg (𝑇𝐵))
3534oveq1i 7356 . 2 (𝑆 + (𝑇𝑧)) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧))
3632, 33, 353eqtr4g 2791 1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cun 3895  wss 3897  {csn 4573   class class class wbr 5089  cmpt 5170  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143   < clt 11146  cle 11147  cmin 11344  [,)cico 13247  [,]cicc 13248   Σg cgsu 17344  CMndccmn 19692  Ringcrg 20151  fldccnfld 21291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-ur 20100  df-ring 20153  df-cring 20154  df-cnfld 21292
This theorem is referenced by:  jensenlem2  26925
  Copyright terms: Public domain W3C validator