| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for jensen 26875. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| Ref | Expression |
|---|---|
| jensen.1 | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| jensen.2 | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| jensen.3 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
| jensen.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| jensen.5 | ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
| jensen.6 | ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
| jensen.7 | ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) |
| jensen.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| jensenlem.1 | ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) |
| jensenlem.2 | ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) |
| jensenlem.s | ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) |
| jensenlem.l | ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) |
| Ref | Expression |
|---|---|
| jensenlem1 | ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21244 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfldadd 21246 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 3 | cnring 21278 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 4 | ringcmn 20167 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 5 | 3, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
| 6 | jensen.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | jensenlem.2 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) | |
| 8 | 7 | unssad 4152 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 9 | 6, 8 | ssfid 9188 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 10 | rge0ssre 13393 | . . . . . 6 ⊢ (0[,)+∞) ⊆ ℝ | |
| 11 | ax-resscn 11101 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 12 | 10, 11 | sstri 3953 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℂ |
| 13 | 8 | sselda 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 14 | jensen.5 | . . . . . . 7 ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) | |
| 15 | 14 | ffvelcdmda 7038 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
| 16 | 13, 15 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
| 17 | 12, 16 | sselid 3941 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ ℂ) |
| 18 | 7 | unssbd 4153 | . . . . 5 ⊢ (𝜑 → {𝑧} ⊆ 𝐴) |
| 19 | vex 3448 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 20 | 19 | snss 4745 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
| 21 | 18, 20 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
| 22 | jensenlem.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) | |
| 23 | 14, 21 | ffvelcdmd 7039 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝑧) ∈ (0[,)+∞)) |
| 24 | 12, 23 | sselid 3941 | . . . 4 ⊢ (𝜑 → (𝑇‘𝑧) ∈ ℂ) |
| 25 | fveq2 6840 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑇‘𝑥) = (𝑇‘𝑧)) | |
| 26 | 1, 2, 5, 9, 17, 21, 22, 24, 25 | gsumunsn 19866 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
| 27 | 14, 7 | feqresmpt 6912 | . . . 4 ⊢ (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) |
| 28 | 27 | oveq2d 7385 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥)))) |
| 29 | 14, 8 | feqresmpt 6912 | . . . . 5 ⊢ (𝜑 → (𝑇 ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) |
| 30 | 29 | oveq2d 7385 | . . . 4 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ 𝐵)) = (ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥)))) |
| 31 | 30 | oveq1d 7384 | . . 3 ⊢ (𝜑 → ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
| 32 | 26, 28, 31 | 3eqtr4d 2774 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧))) |
| 33 | jensenlem.l | . 2 ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) | |
| 34 | jensenlem.s | . . 3 ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) | |
| 35 | 34 | oveq1i 7379 | . 2 ⊢ (𝑆 + (𝑇‘𝑧)) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) |
| 36 | 32, 33, 35 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 ↾ cres 5633 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 +∞cpnf 11181 < clt 11184 ≤ cle 11185 − cmin 11381 [,)cico 13284 [,]cicc 13285 Σg cgsu 17379 CMndccmn 19686 Ringcrg 20118 ℂfldccnfld 21240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-ico 13288 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-gsum 17381 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-cnfld 21241 |
| This theorem is referenced by: jensenlem2 26874 |
| Copyright terms: Public domain | W3C validator |