![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version |
Description: Lemma for jensen 26941. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
jensen.1 | β’ (π β π· β β) |
jensen.2 | β’ (π β πΉ:π·βΆβ) |
jensen.3 | β’ ((π β§ (π β π· β§ π β π·)) β (π[,]π) β π·) |
jensen.4 | β’ (π β π΄ β Fin) |
jensen.5 | β’ (π β π:π΄βΆ(0[,)+β)) |
jensen.6 | β’ (π β π:π΄βΆπ·) |
jensen.7 | β’ (π β 0 < (βfld Ξ£g π)) |
jensen.8 | β’ ((π β§ (π₯ β π· β§ π¦ β π· β§ π‘ β (0[,]1))) β (πΉβ((π‘ Β· π₯) + ((1 β π‘) Β· π¦))) β€ ((π‘ Β· (πΉβπ₯)) + ((1 β π‘) Β· (πΉβπ¦)))) |
jensenlem.1 | β’ (π β Β¬ π§ β π΅) |
jensenlem.2 | β’ (π β (π΅ βͺ {π§}) β π΄) |
jensenlem.s | β’ π = (βfld Ξ£g (π βΎ π΅)) |
jensenlem.l | β’ πΏ = (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) |
Ref | Expression |
---|---|
jensenlem1 | β’ (π β πΏ = (π + (πβπ§))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 21290 | . . . 4 β’ β = (Baseββfld) | |
2 | cnfldadd 21292 | . . . 4 β’ + = (+gββfld) | |
3 | cnring 21325 | . . . . 5 β’ βfld β Ring | |
4 | ringcmn 20225 | . . . . 5 β’ (βfld β Ring β βfld β CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 β’ (π β βfld β CMnd) |
6 | jensen.4 | . . . . 5 β’ (π β π΄ β Fin) | |
7 | jensenlem.2 | . . . . . 6 β’ (π β (π΅ βͺ {π§}) β π΄) | |
8 | 7 | unssad 4189 | . . . . 5 β’ (π β π΅ β π΄) |
9 | 6, 8 | ssfid 9298 | . . . 4 β’ (π β π΅ β Fin) |
10 | rge0ssre 13473 | . . . . . 6 β’ (0[,)+β) β β | |
11 | ax-resscn 11203 | . . . . . 6 β’ β β β | |
12 | 10, 11 | sstri 3991 | . . . . 5 β’ (0[,)+β) β β |
13 | 8 | sselda 3982 | . . . . . 6 β’ ((π β§ π₯ β π΅) β π₯ β π΄) |
14 | jensen.5 | . . . . . . 7 β’ (π β π:π΄βΆ(0[,)+β)) | |
15 | 14 | ffvelcdmda 7099 | . . . . . 6 β’ ((π β§ π₯ β π΄) β (πβπ₯) β (0[,)+β)) |
16 | 13, 15 | syldan 589 | . . . . 5 β’ ((π β§ π₯ β π΅) β (πβπ₯) β (0[,)+β)) |
17 | 12, 16 | sselid 3980 | . . . 4 β’ ((π β§ π₯ β π΅) β (πβπ₯) β β) |
18 | 7 | unssbd 4190 | . . . . 5 β’ (π β {π§} β π΄) |
19 | vex 3477 | . . . . . 6 β’ π§ β V | |
20 | 19 | snss 4794 | . . . . 5 β’ (π§ β π΄ β {π§} β π΄) |
21 | 18, 20 | sylibr 233 | . . . 4 β’ (π β π§ β π΄) |
22 | jensenlem.1 | . . . 4 β’ (π β Β¬ π§ β π΅) | |
23 | 14, 21 | ffvelcdmd 7100 | . . . . 5 β’ (π β (πβπ§) β (0[,)+β)) |
24 | 12, 23 | sselid 3980 | . . . 4 β’ (π β (πβπ§) β β) |
25 | fveq2 6902 | . . . 4 β’ (π₯ = π§ β (πβπ₯) = (πβπ§)) | |
26 | 1, 2, 5, 9, 17, 21, 22, 24, 25 | gsumunsn 19922 | . . 3 β’ (π β (βfld Ξ£g (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯))) = ((βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯))) + (πβπ§))) |
27 | 14, 7 | feqresmpt 6973 | . . . 4 β’ (π β (π βΎ (π΅ βͺ {π§})) = (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯))) |
28 | 27 | oveq2d 7442 | . . 3 β’ (π β (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) = (βfld Ξ£g (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯)))) |
29 | 14, 8 | feqresmpt 6973 | . . . . 5 β’ (π β (π βΎ π΅) = (π₯ β π΅ β¦ (πβπ₯))) |
30 | 29 | oveq2d 7442 | . . . 4 β’ (π β (βfld Ξ£g (π βΎ π΅)) = (βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯)))) |
31 | 30 | oveq1d 7441 | . . 3 β’ (π β ((βfld Ξ£g (π βΎ π΅)) + (πβπ§)) = ((βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯))) + (πβπ§))) |
32 | 26, 28, 31 | 3eqtr4d 2778 | . 2 β’ (π β (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) = ((βfld Ξ£g (π βΎ π΅)) + (πβπ§))) |
33 | jensenlem.l | . 2 β’ πΏ = (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) | |
34 | jensenlem.s | . . 3 β’ π = (βfld Ξ£g (π βΎ π΅)) | |
35 | 34 | oveq1i 7436 | . 2 β’ (π + (πβπ§)) = ((βfld Ξ£g (π βΎ π΅)) + (πβπ§)) |
36 | 32, 33, 35 | 3eqtr4g 2793 | 1 β’ (π β πΏ = (π + (πβπ§))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βͺ cun 3947 β wss 3949 {csn 4632 class class class wbr 5152 β¦ cmpt 5235 βΎ cres 5684 βΆwf 6549 βcfv 6553 (class class class)co 7426 Fincfn 8970 βcc 11144 βcr 11145 0cc0 11146 1c1 11147 + caddc 11149 Β· cmul 11151 +βcpnf 11283 < clt 11286 β€ cle 11287 β cmin 11482 [,)cico 13366 [,]cicc 13367 Ξ£g cgsu 17429 CMndccmn 19742 Ringcrg 20180 βfldccnfld 21286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-ico 13370 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-0g 17430 df-gsum 17431 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-mulg 19031 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-ur 20129 df-ring 20182 df-cring 20183 df-cnfld 21287 |
This theorem is referenced by: jensenlem2 26940 |
Copyright terms: Public domain | W3C validator |