![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version |
Description: Lemma for jensen 27050. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
jensen.1 | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
jensen.2 | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
jensen.3 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
jensen.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
jensen.5 | ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
jensen.6 | ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
jensen.7 | ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) |
jensen.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
jensenlem.1 | ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) |
jensenlem.2 | ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) |
jensenlem.s | ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) |
jensenlem.l | ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) |
Ref | Expression |
---|---|
jensenlem1 | ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 21391 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfldadd 21393 | . . . 4 ⊢ + = (+g‘ℂfld) | |
3 | cnring 21426 | . . . . 5 ⊢ ℂfld ∈ Ring | |
4 | ringcmn 20305 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
6 | jensen.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | jensenlem.2 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) | |
8 | 7 | unssad 4216 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
9 | 6, 8 | ssfid 9329 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) |
10 | rge0ssre 13516 | . . . . . 6 ⊢ (0[,)+∞) ⊆ ℝ | |
11 | ax-resscn 11241 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
12 | 10, 11 | sstri 4018 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℂ |
13 | 8 | sselda 4008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
14 | jensen.5 | . . . . . . 7 ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) | |
15 | 14 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
16 | 13, 15 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
17 | 12, 16 | sselid 4006 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ ℂ) |
18 | 7 | unssbd 4217 | . . . . 5 ⊢ (𝜑 → {𝑧} ⊆ 𝐴) |
19 | vex 3492 | . . . . . 6 ⊢ 𝑧 ∈ V | |
20 | 19 | snss 4810 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
21 | 18, 20 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
22 | jensenlem.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) | |
23 | 14, 21 | ffvelcdmd 7119 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝑧) ∈ (0[,)+∞)) |
24 | 12, 23 | sselid 4006 | . . . 4 ⊢ (𝜑 → (𝑇‘𝑧) ∈ ℂ) |
25 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑇‘𝑥) = (𝑇‘𝑧)) | |
26 | 1, 2, 5, 9, 17, 21, 22, 24, 25 | gsumunsn 20002 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
27 | 14, 7 | feqresmpt 6991 | . . . 4 ⊢ (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) |
28 | 27 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥)))) |
29 | 14, 8 | feqresmpt 6991 | . . . . 5 ⊢ (𝜑 → (𝑇 ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) |
30 | 29 | oveq2d 7464 | . . . 4 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ 𝐵)) = (ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥)))) |
31 | 30 | oveq1d 7463 | . . 3 ⊢ (𝜑 → ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
32 | 26, 28, 31 | 3eqtr4d 2790 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧))) |
33 | jensenlem.l | . 2 ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) | |
34 | jensenlem.s | . . 3 ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) | |
35 | 34 | oveq1i 7458 | . 2 ⊢ (𝑆 + (𝑇‘𝑧)) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) |
36 | 32, 33, 35 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 +∞cpnf 11321 < clt 11324 ≤ cle 11325 − cmin 11520 [,)cico 13409 [,]cicc 13410 Σg cgsu 17500 CMndccmn 19822 Ringcrg 20260 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-ico 13413 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-ur 20209 df-ring 20262 df-cring 20263 df-cnfld 21388 |
This theorem is referenced by: jensenlem2 27049 |
Copyright terms: Public domain | W3C validator |