![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version |
Description: Lemma for jensen 25171. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
jensen.1 | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
jensen.2 | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
jensen.3 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
jensen.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
jensen.5 | ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
jensen.6 | ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
jensen.7 | ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) |
jensen.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
jensenlem.1 | ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) |
jensenlem.2 | ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) |
jensenlem.s | ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) |
jensenlem.l | ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) |
Ref | Expression |
---|---|
jensenlem1 | ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20150 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfldadd 20151 | . . . 4 ⊢ + = (+g‘ℂfld) | |
3 | cnring 20168 | . . . . 5 ⊢ ℂfld ∈ Ring | |
4 | ringcmn 18972 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
6 | jensen.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | jensenlem.2 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) | |
8 | 7 | unssad 4013 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
9 | ssfi 8470 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
10 | 6, 8, 9 | syl2anc 579 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) |
11 | rge0ssre 12598 | . . . . . 6 ⊢ (0[,)+∞) ⊆ ℝ | |
12 | ax-resscn 10331 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
13 | 11, 12 | sstri 3830 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℂ |
14 | 8 | sselda 3821 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
15 | jensen.5 | . . . . . . 7 ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) | |
16 | 15 | ffvelrnda 6625 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
17 | 14, 16 | syldan 585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
18 | 13, 17 | sseldi 3819 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ ℂ) |
19 | 7 | unssbd 4014 | . . . . 5 ⊢ (𝜑 → {𝑧} ⊆ 𝐴) |
20 | vex 3401 | . . . . . 6 ⊢ 𝑧 ∈ V | |
21 | 20 | snss 4549 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
22 | 19, 21 | sylibr 226 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
23 | jensenlem.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) | |
24 | 15, 22 | ffvelrnd 6626 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝑧) ∈ (0[,)+∞)) |
25 | 13, 24 | sseldi 3819 | . . . 4 ⊢ (𝜑 → (𝑇‘𝑧) ∈ ℂ) |
26 | fveq2 6448 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑇‘𝑥) = (𝑇‘𝑧)) | |
27 | 1, 2, 5, 10, 18, 22, 23, 25, 26 | gsumunsn 18749 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
28 | 15, 7 | feqresmpt 6512 | . . . 4 ⊢ (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) |
29 | 28 | oveq2d 6940 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥)))) |
30 | 15, 8 | feqresmpt 6512 | . . . . 5 ⊢ (𝜑 → (𝑇 ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) |
31 | 30 | oveq2d 6940 | . . . 4 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ 𝐵)) = (ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥)))) |
32 | 31 | oveq1d 6939 | . . 3 ⊢ (𝜑 → ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
33 | 27, 29, 32 | 3eqtr4d 2824 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧))) |
34 | jensenlem.l | . 2 ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) | |
35 | jensenlem.s | . . 3 ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) | |
36 | 35 | oveq1i 6934 | . 2 ⊢ (𝑆 + (𝑇‘𝑧)) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) |
37 | 33, 34, 36 | 3eqtr4g 2839 | 1 ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∪ cun 3790 ⊆ wss 3792 {csn 4398 class class class wbr 4888 ↦ cmpt 4967 ↾ cres 5359 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 Fincfn 8243 ℂcc 10272 ℝcr 10273 0cc0 10274 1c1 10275 + caddc 10277 · cmul 10279 +∞cpnf 10410 < clt 10413 ≤ cle 10414 − cmin 10608 [,)cico 12493 [,]cicc 12494 Σg cgsu 16491 CMndccmn 18583 Ringcrg 18938 ℂfldccnfld 20146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-ico 12497 df-fz 12648 df-fzo 12789 df-seq 13124 df-hash 13440 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-0g 16492 df-gsum 16493 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-grp 17816 df-minusg 17817 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-abl 18586 df-mgp 18881 df-ur 18893 df-ring 18940 df-cring 18941 df-cnfld 20147 |
This theorem is referenced by: jensenlem2 25170 |
Copyright terms: Public domain | W3C validator |