MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem1 Structured version   Visualization version   GIF version

Theorem jensenlem1 25572
Description: Lemma for jensen 25574. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
Assertion
Ref Expression
jensenlem1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem1
StepHypRef Expression
1 cnfldbas 20095 . . . 4 ℂ = (Base‘ℂfld)
2 cnfldadd 20096 . . . 4 + = (+g‘ℂfld)
3 cnring 20113 . . . . 5 fld ∈ Ring
4 ringcmn 19327 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 (𝜑 → ℂfld ∈ CMnd)
6 jensen.4 . . . . 5 (𝜑𝐴 ∈ Fin)
7 jensenlem.2 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
87unssad 4114 . . . . 5 (𝜑𝐵𝐴)
96, 8ssfid 8725 . . . 4 (𝜑𝐵 ∈ Fin)
10 rge0ssre 12834 . . . . . 6 (0[,)+∞) ⊆ ℝ
11 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
1210, 11sstri 3924 . . . . 5 (0[,)+∞) ⊆ ℂ
138sselda 3915 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
14 jensen.5 . . . . . . 7 (𝜑𝑇:𝐴⟶(0[,)+∞))
1514ffvelrnda 6828 . . . . . 6 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
1613, 15syldan 594 . . . . 5 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
1712, 16sseldi 3913 . . . 4 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
187unssbd 4115 . . . . 5 (𝜑 → {𝑧} ⊆ 𝐴)
19 vex 3444 . . . . . 6 𝑧 ∈ V
2019snss 4679 . . . . 5 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
2118, 20sylibr 237 . . . 4 (𝜑𝑧𝐴)
22 jensenlem.1 . . . 4 (𝜑 → ¬ 𝑧𝐵)
2314, 21ffvelrnd 6829 . . . . 5 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
2412, 23sseldi 3913 . . . 4 (𝜑 → (𝑇𝑧) ∈ ℂ)
25 fveq2 6645 . . . 4 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
261, 2, 5, 9, 17, 21, 22, 24, 25gsumunsn 19073 . . 3 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
2714, 7feqresmpt 6709 . . . 4 (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥)))
2827oveq2d 7151 . . 3 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))))
2914, 8feqresmpt 6709 . . . . 5 (𝜑 → (𝑇𝐵) = (𝑥𝐵 ↦ (𝑇𝑥)))
3029oveq2d 7151 . . . 4 (𝜑 → (ℂfld Σg (𝑇𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))))
3130oveq1d 7150 . . 3 (𝜑 → ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
3226, 28, 313eqtr4d 2843 . 2 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)))
33 jensenlem.l . 2 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
34 jensenlem.s . . 3 𝑆 = (ℂfld Σg (𝑇𝐵))
3534oveq1i 7145 . 2 (𝑆 + (𝑇𝑧)) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧))
3632, 33, 353eqtr4g 2858 1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cun 3879  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661   < clt 10664  cle 10665  cmin 10859  [,)cico 12728  [,]cicc 12729   Σg cgsu 16706  CMndccmn 18898  Ringcrg 19290  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-cnfld 20092
This theorem is referenced by:  jensenlem2  25573
  Copyright terms: Public domain W3C validator