| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for jensen 26926. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| Ref | Expression |
|---|---|
| jensen.1 | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| jensen.2 | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| jensen.3 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
| jensen.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| jensen.5 | ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
| jensen.6 | ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
| jensen.7 | ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) |
| jensen.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| jensenlem.1 | ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) |
| jensenlem.2 | ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) |
| jensenlem.s | ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) |
| jensenlem.l | ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) |
| Ref | Expression |
|---|---|
| jensenlem1 | ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21295 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfldadd 21297 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 3 | cnring 21327 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 4 | ringcmn 20200 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 5 | 3, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
| 6 | jensen.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | jensenlem.2 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) | |
| 8 | 7 | unssad 4140 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 9 | 6, 8 | ssfid 9153 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 10 | rge0ssre 13356 | . . . . . 6 ⊢ (0[,)+∞) ⊆ ℝ | |
| 11 | ax-resscn 11063 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 12 | 10, 11 | sstri 3939 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℂ |
| 13 | 8 | sselda 3929 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 14 | jensen.5 | . . . . . . 7 ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) | |
| 15 | 14 | ffvelcdmda 7017 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
| 16 | 13, 15 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
| 17 | 12, 16 | sselid 3927 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ ℂ) |
| 18 | 7 | unssbd 4141 | . . . . 5 ⊢ (𝜑 → {𝑧} ⊆ 𝐴) |
| 19 | vex 3440 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 20 | 19 | snss 4734 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
| 21 | 18, 20 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
| 22 | jensenlem.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) | |
| 23 | 14, 21 | ffvelcdmd 7018 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝑧) ∈ (0[,)+∞)) |
| 24 | 12, 23 | sselid 3927 | . . . 4 ⊢ (𝜑 → (𝑇‘𝑧) ∈ ℂ) |
| 25 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑇‘𝑥) = (𝑇‘𝑧)) | |
| 26 | 1, 2, 5, 9, 17, 21, 22, 24, 25 | gsumunsn 19872 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
| 27 | 14, 7 | feqresmpt 6891 | . . . 4 ⊢ (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) |
| 28 | 27 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥)))) |
| 29 | 14, 8 | feqresmpt 6891 | . . . . 5 ⊢ (𝜑 → (𝑇 ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) |
| 30 | 29 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ 𝐵)) = (ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥)))) |
| 31 | 30 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
| 32 | 26, 28, 31 | 3eqtr4d 2776 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧))) |
| 33 | jensenlem.l | . 2 ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) | |
| 34 | jensenlem.s | . . 3 ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) | |
| 35 | 34 | oveq1i 7356 | . 2 ⊢ (𝑆 + (𝑇‘𝑧)) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) |
| 36 | 32, 33, 35 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 +∞cpnf 11143 < clt 11146 ≤ cle 11147 − cmin 11344 [,)cico 13247 [,]cicc 13248 Σg cgsu 17344 CMndccmn 19692 Ringcrg 20151 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-cring 20154 df-cnfld 21292 |
| This theorem is referenced by: jensenlem2 26925 |
| Copyright terms: Public domain | W3C validator |