![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version |
Description: Lemma for jensen 26871. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
jensen.1 | β’ (π β π· β β) |
jensen.2 | β’ (π β πΉ:π·βΆβ) |
jensen.3 | β’ ((π β§ (π β π· β§ π β π·)) β (π[,]π) β π·) |
jensen.4 | β’ (π β π΄ β Fin) |
jensen.5 | β’ (π β π:π΄βΆ(0[,)+β)) |
jensen.6 | β’ (π β π:π΄βΆπ·) |
jensen.7 | β’ (π β 0 < (βfld Ξ£g π)) |
jensen.8 | β’ ((π β§ (π₯ β π· β§ π¦ β π· β§ π‘ β (0[,]1))) β (πΉβ((π‘ Β· π₯) + ((1 β π‘) Β· π¦))) β€ ((π‘ Β· (πΉβπ₯)) + ((1 β π‘) Β· (πΉβπ¦)))) |
jensenlem.1 | β’ (π β Β¬ π§ β π΅) |
jensenlem.2 | β’ (π β (π΅ βͺ {π§}) β π΄) |
jensenlem.s | β’ π = (βfld Ξ£g (π βΎ π΅)) |
jensenlem.l | β’ πΏ = (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) |
Ref | Expression |
---|---|
jensenlem1 | β’ (π β πΏ = (π + (πβπ§))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 21239 | . . . 4 β’ β = (Baseββfld) | |
2 | cnfldadd 21241 | . . . 4 β’ + = (+gββfld) | |
3 | cnring 21274 | . . . . 5 β’ βfld β Ring | |
4 | ringcmn 20178 | . . . . 5 β’ (βfld β Ring β βfld β CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 β’ (π β βfld β CMnd) |
6 | jensen.4 | . . . . 5 β’ (π β π΄ β Fin) | |
7 | jensenlem.2 | . . . . . 6 β’ (π β (π΅ βͺ {π§}) β π΄) | |
8 | 7 | unssad 4182 | . . . . 5 β’ (π β π΅ β π΄) |
9 | 6, 8 | ssfid 9266 | . . . 4 β’ (π β π΅ β Fin) |
10 | rge0ssre 13436 | . . . . . 6 β’ (0[,)+β) β β | |
11 | ax-resscn 11166 | . . . . . 6 β’ β β β | |
12 | 10, 11 | sstri 3986 | . . . . 5 β’ (0[,)+β) β β |
13 | 8 | sselda 3977 | . . . . . 6 β’ ((π β§ π₯ β π΅) β π₯ β π΄) |
14 | jensen.5 | . . . . . . 7 β’ (π β π:π΄βΆ(0[,)+β)) | |
15 | 14 | ffvelcdmda 7079 | . . . . . 6 β’ ((π β§ π₯ β π΄) β (πβπ₯) β (0[,)+β)) |
16 | 13, 15 | syldan 590 | . . . . 5 β’ ((π β§ π₯ β π΅) β (πβπ₯) β (0[,)+β)) |
17 | 12, 16 | sselid 3975 | . . . 4 β’ ((π β§ π₯ β π΅) β (πβπ₯) β β) |
18 | 7 | unssbd 4183 | . . . . 5 β’ (π β {π§} β π΄) |
19 | vex 3472 | . . . . . 6 β’ π§ β V | |
20 | 19 | snss 4784 | . . . . 5 β’ (π§ β π΄ β {π§} β π΄) |
21 | 18, 20 | sylibr 233 | . . . 4 β’ (π β π§ β π΄) |
22 | jensenlem.1 | . . . 4 β’ (π β Β¬ π§ β π΅) | |
23 | 14, 21 | ffvelcdmd 7080 | . . . . 5 β’ (π β (πβπ§) β (0[,)+β)) |
24 | 12, 23 | sselid 3975 | . . . 4 β’ (π β (πβπ§) β β) |
25 | fveq2 6884 | . . . 4 β’ (π₯ = π§ β (πβπ₯) = (πβπ§)) | |
26 | 1, 2, 5, 9, 17, 21, 22, 24, 25 | gsumunsn 19877 | . . 3 β’ (π β (βfld Ξ£g (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯))) = ((βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯))) + (πβπ§))) |
27 | 14, 7 | feqresmpt 6954 | . . . 4 β’ (π β (π βΎ (π΅ βͺ {π§})) = (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯))) |
28 | 27 | oveq2d 7420 | . . 3 β’ (π β (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) = (βfld Ξ£g (π₯ β (π΅ βͺ {π§}) β¦ (πβπ₯)))) |
29 | 14, 8 | feqresmpt 6954 | . . . . 5 β’ (π β (π βΎ π΅) = (π₯ β π΅ β¦ (πβπ₯))) |
30 | 29 | oveq2d 7420 | . . . 4 β’ (π β (βfld Ξ£g (π βΎ π΅)) = (βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯)))) |
31 | 30 | oveq1d 7419 | . . 3 β’ (π β ((βfld Ξ£g (π βΎ π΅)) + (πβπ§)) = ((βfld Ξ£g (π₯ β π΅ β¦ (πβπ₯))) + (πβπ§))) |
32 | 26, 28, 31 | 3eqtr4d 2776 | . 2 β’ (π β (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) = ((βfld Ξ£g (π βΎ π΅)) + (πβπ§))) |
33 | jensenlem.l | . 2 β’ πΏ = (βfld Ξ£g (π βΎ (π΅ βͺ {π§}))) | |
34 | jensenlem.s | . . 3 β’ π = (βfld Ξ£g (π βΎ π΅)) | |
35 | 34 | oveq1i 7414 | . 2 β’ (π + (πβπ§)) = ((βfld Ξ£g (π βΎ π΅)) + (πβπ§)) |
36 | 32, 33, 35 | 3eqtr4g 2791 | 1 β’ (π β πΏ = (π + (πβπ§))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βͺ cun 3941 β wss 3943 {csn 4623 class class class wbr 5141 β¦ cmpt 5224 βΎ cres 5671 βΆwf 6532 βcfv 6536 (class class class)co 7404 Fincfn 8938 βcc 11107 βcr 11108 0cc0 11109 1c1 11110 + caddc 11112 Β· cmul 11114 +βcpnf 11246 < clt 11249 β€ cle 11250 β cmin 11445 [,)cico 13329 [,]cicc 13330 Ξ£g cgsu 17392 CMndccmn 19697 Ringcrg 20135 βfldccnfld 21235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-ico 13333 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14293 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-gsum 17394 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-grp 18863 df-minusg 18864 df-mulg 18993 df-cntz 19230 df-cmn 19699 df-abl 19700 df-mgp 20037 df-ur 20084 df-ring 20137 df-cring 20138 df-cnfld 21236 |
This theorem is referenced by: jensenlem2 26870 |
Copyright terms: Public domain | W3C validator |