MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem1 Structured version   Visualization version   GIF version

Theorem yonedalem1 18292
Description: Lemma for yoneda 18303. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
Assertion
Ref Expression
yonedalem1 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))

Proof of Theorem yonedalem1
StepHypRef Expression
1 yoneda.z . . 3 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
2 eqid 2726 . . . . 5 ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) = ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))
3 eqid 2726 . . . . 5 ((oppCat‘𝑄) ×c 𝑄) = ((oppCat‘𝑄) ×c 𝑄)
4 eqid 2726 . . . . . . 7 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
5 yoneda.q . . . . . . . 8 𝑄 = (𝑂 FuncCat 𝑆)
6 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
7 yoneda.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
87oppccat 17732 . . . . . . . . 9 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
96, 8syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Cat)
10 yoneda.w . . . . . . . . . 10 (𝜑𝑉𝑊)
11 yoneda.v . . . . . . . . . . 11 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
1211unssbd 4186 . . . . . . . . . 10 (𝜑𝑈𝑉)
1310, 12ssexd 5321 . . . . . . . . 9 (𝜑𝑈 ∈ V)
14 yoneda.s . . . . . . . . . 10 𝑆 = (SetCat‘𝑈)
1514setccat 18102 . . . . . . . . 9 (𝑈 ∈ V → 𝑆 ∈ Cat)
1613, 15syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Cat)
175, 9, 16fuccat 17990 . . . . . . 7 (𝜑𝑄 ∈ Cat)
18 eqid 2726 . . . . . . 7 (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂)
194, 17, 9, 182ndfcl 18217 . . . . . 6 (𝜑 → (𝑄 2ndF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑂))
20 eqid 2726 . . . . . . . 8 (oppCat‘𝑄) = (oppCat‘𝑄)
21 relfunc 17876 . . . . . . . . 9 Rel (𝐶 Func 𝑄)
22 yoneda.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
23 yoneda.u . . . . . . . . . 10 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2422, 6, 7, 14, 5, 13, 23yoncl 18282 . . . . . . . . 9 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
25 1st2ndbr 8048 . . . . . . . . 9 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
2621, 24, 25sylancr 585 . . . . . . . 8 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
277, 20, 26funcoppc 17889 . . . . . . 7 (𝜑 → (1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌))
28 df-br 5146 . . . . . . 7 ((1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌) ↔ ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
2927, 28sylib 217 . . . . . 6 (𝜑 → ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
3019, 29cofucl 17902 . . . . 5 (𝜑 → (⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func (oppCat‘𝑄)))
31 eqid 2726 . . . . . 6 (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂)
324, 17, 9, 311stfcl 18216 . . . . 5 (𝜑 → (𝑄 1stF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑄))
332, 3, 30, 32prfcl 18222 . . . 4 (𝜑 → ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func ((oppCat‘𝑄) ×c 𝑄)))
34 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
35 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
3611unssad 4185 . . . . 5 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
3734, 20, 35, 17, 10, 36hofcl 18279 . . . 4 (𝜑𝐻 ∈ (((oppCat‘𝑄) ×c 𝑄) Func 𝑇))
3833, 37cofucl 17902 . . 3 (𝜑 → (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))) ∈ ((𝑄 ×c 𝑂) Func 𝑇))
391, 38eqeltrid 2830 . 2 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
4035, 14, 10, 12funcsetcres2 18110 . . 3 (𝜑 → ((𝑄 ×c 𝑂) Func 𝑆) ⊆ ((𝑄 ×c 𝑂) Func 𝑇))
41 yoneda.e . . . 4 𝐸 = (𝑂 evalF 𝑆)
4241, 5, 9, 16evlfcl 18242 . . 3 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑆))
4340, 42sseldd 3979 . 2 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
4439, 43jca 510 1 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cun 3944  wss 3946  cop 4629   class class class wbr 5145  ran crn 5675  Rel wrel 5679  cfv 6546  (class class class)co 7416  1st c1st 7993  2nd c2nd 7994  tpos ctpos 8232  Basecbs 17208  Catccat 17672  Idccid 17673  Homf chomf 17674  oppCatcoppc 17719   Func cfunc 17868  func ccofu 17870   FuncCat cfuc 17960  SetCatcsetc 18092   ×c cxpc 18187   1stF c1stf 18188   2ndF c2ndf 18189   ⟨,⟩F cprf 18190   evalF cevlf 18229  HomFchof 18268  Yoncyon 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-fz 13533  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-hom 17285  df-cco 17286  df-cat 17676  df-cid 17677  df-homf 17678  df-comf 17679  df-oppc 17720  df-ssc 17821  df-resc 17822  df-subc 17823  df-func 17872  df-cofu 17874  df-nat 17961  df-fuc 17962  df-setc 18093  df-xpc 18191  df-1stf 18192  df-2ndf 18193  df-prf 18194  df-evlf 18233  df-curf 18234  df-hof 18270  df-yon 18271
This theorem is referenced by:  yonedalem3b  18299  yonedalem3  18300  yonedainv  18301  yonffthlem  18302  yoneda  18303
  Copyright terms: Public domain W3C validator