MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem1 Structured version   Visualization version   GIF version

Theorem yonedalem1 18221
Description: Lemma for yoneda 18232. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y π‘Œ = (Yonβ€˜πΆ)
yoneda.b 𝐡 = (Baseβ€˜πΆ)
yoneda.1 1 = (Idβ€˜πΆ)
yoneda.o 𝑂 = (oppCatβ€˜πΆ)
yoneda.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoneda.t 𝑇 = (SetCatβ€˜π‘‰)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomFβ€˜π‘„)
yoneda.r 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (πœ‘ β†’ 𝐢 ∈ Cat)
yoneda.w (πœ‘ β†’ 𝑉 ∈ π‘Š)
yoneda.u (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoneda.v (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
Assertion
Ref Expression
yonedalem1 (πœ‘ β†’ (𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇)))

Proof of Theorem yonedalem1
StepHypRef Expression
1 yoneda.z . . 3 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
2 eqid 2732 . . . . 5 ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) = ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))
3 eqid 2732 . . . . 5 ((oppCatβ€˜π‘„) Γ—c 𝑄) = ((oppCatβ€˜π‘„) Γ—c 𝑄)
4 eqid 2732 . . . . . . 7 (𝑄 Γ—c 𝑂) = (𝑄 Γ—c 𝑂)
5 yoneda.q . . . . . . . 8 𝑄 = (𝑂 FuncCat 𝑆)
6 yoneda.c . . . . . . . . 9 (πœ‘ β†’ 𝐢 ∈ Cat)
7 yoneda.o . . . . . . . . . 10 𝑂 = (oppCatβ€˜πΆ)
87oppccat 17664 . . . . . . . . 9 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
96, 8syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑂 ∈ Cat)
10 yoneda.w . . . . . . . . . 10 (πœ‘ β†’ 𝑉 ∈ π‘Š)
11 yoneda.v . . . . . . . . . . 11 (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
1211unssbd 4187 . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ βŠ† 𝑉)
1310, 12ssexd 5323 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ ∈ V)
14 yoneda.s . . . . . . . . . 10 𝑆 = (SetCatβ€˜π‘ˆ)
1514setccat 18031 . . . . . . . . 9 (π‘ˆ ∈ V β†’ 𝑆 ∈ Cat)
1613, 15syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑆 ∈ Cat)
175, 9, 16fuccat 17919 . . . . . . 7 (πœ‘ β†’ 𝑄 ∈ Cat)
18 eqid 2732 . . . . . . 7 (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂)
194, 17, 9, 182ndfcl 18146 . . . . . 6 (πœ‘ β†’ (𝑄 2ndF 𝑂) ∈ ((𝑄 Γ—c 𝑂) Func 𝑂))
20 eqid 2732 . . . . . . . 8 (oppCatβ€˜π‘„) = (oppCatβ€˜π‘„)
21 relfunc 17808 . . . . . . . . 9 Rel (𝐢 Func 𝑄)
22 yoneda.y . . . . . . . . . 10 π‘Œ = (Yonβ€˜πΆ)
23 yoneda.u . . . . . . . . . 10 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
2422, 6, 7, 14, 5, 13, 23yoncl 18211 . . . . . . . . 9 (πœ‘ β†’ π‘Œ ∈ (𝐢 Func 𝑄))
25 1st2ndbr 8024 . . . . . . . . 9 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
2621, 24, 25sylancr 587 . . . . . . . 8 (πœ‘ β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
277, 20, 26funcoppc 17821 . . . . . . 7 (πœ‘ β†’ (1st β€˜π‘Œ)(𝑂 Func (oppCatβ€˜π‘„))tpos (2nd β€˜π‘Œ))
28 df-br 5148 . . . . . . 7 ((1st β€˜π‘Œ)(𝑂 Func (oppCatβ€˜π‘„))tpos (2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∈ (𝑂 Func (oppCatβ€˜π‘„)))
2927, 28sylib 217 . . . . . 6 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∈ (𝑂 Func (oppCatβ€˜π‘„)))
3019, 29cofucl 17834 . . . . 5 (πœ‘ β†’ (⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 Γ—c 𝑂) Func (oppCatβ€˜π‘„)))
31 eqid 2732 . . . . . 6 (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂)
324, 17, 9, 311stfcl 18145 . . . . 5 (πœ‘ β†’ (𝑄 1stF 𝑂) ∈ ((𝑄 Γ—c 𝑂) Func 𝑄))
332, 3, 30, 32prfcl 18151 . . . 4 (πœ‘ β†’ ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) ∈ ((𝑄 Γ—c 𝑂) Func ((oppCatβ€˜π‘„) Γ—c 𝑄)))
34 yoneda.h . . . . 5 𝐻 = (HomFβ€˜π‘„)
35 yoneda.t . . . . 5 𝑇 = (SetCatβ€˜π‘‰)
3611unssad 4186 . . . . 5 (πœ‘ β†’ ran (Homf β€˜π‘„) βŠ† 𝑉)
3734, 20, 35, 17, 10, 36hofcl 18208 . . . 4 (πœ‘ β†’ 𝐻 ∈ (((oppCatβ€˜π‘„) Γ—c 𝑄) Func 𝑇))
3833, 37cofucl 17834 . . 3 (πœ‘ β†’ (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))) ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
391, 38eqeltrid 2837 . 2 (πœ‘ β†’ 𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
4035, 14, 10, 12funcsetcres2 18039 . . 3 (πœ‘ β†’ ((𝑄 Γ—c 𝑂) Func 𝑆) βŠ† ((𝑄 Γ—c 𝑂) Func 𝑇))
41 yoneda.e . . . 4 𝐸 = (𝑂 evalF 𝑆)
4241, 5, 9, 16evlfcl 18171 . . 3 (πœ‘ β†’ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑆))
4340, 42sseldd 3982 . 2 (πœ‘ β†’ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇))
4439, 43jca 512 1 (πœ‘ β†’ (𝑍 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 Γ—c 𝑂) Func 𝑇)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147  ran crn 5676  Rel wrel 5680  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8206  Basecbs 17140  Catccat 17604  Idccid 17605  Homf chomf 17606  oppCatcoppc 17651   Func cfunc 17800   ∘func ccofu 17802   FuncCat cfuc 17889  SetCatcsetc 18021   Γ—c cxpc 18116   1stF c1stf 18117   2ndF c2ndf 18118   ⟨,⟩F cprf 18119   evalF cevlf 18158  HomFchof 18197  Yoncyon 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-homf 17610  df-comf 17611  df-oppc 17652  df-ssc 17753  df-resc 17754  df-subc 17755  df-func 17804  df-cofu 17806  df-nat 17890  df-fuc 17891  df-setc 18022  df-xpc 18120  df-1stf 18121  df-2ndf 18122  df-prf 18123  df-evlf 18162  df-curf 18163  df-hof 18199  df-yon 18200
This theorem is referenced by:  yonedalem3b  18228  yonedalem3  18229  yonedainv  18230  yonffthlem  18231  yoneda  18232
  Copyright terms: Public domain W3C validator