| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonedalem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for yoneda 18251. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| yoneda.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yoneda.b | ⊢ 𝐵 = (Base‘𝐶) |
| yoneda.1 | ⊢ 1 = (Id‘𝐶) |
| yoneda.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yoneda.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| yoneda.t | ⊢ 𝑇 = (SetCat‘𝑉) |
| yoneda.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
| yoneda.h | ⊢ 𝐻 = (HomF‘𝑄) |
| yoneda.r | ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
| yoneda.e | ⊢ 𝐸 = (𝑂 evalF 𝑆) |
| yoneda.z | ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) |
| yoneda.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yoneda.w | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| yoneda.u | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
| yoneda.v | ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| yonedalem1 | ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yoneda.z | . . 3 ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
| 2 | eqid 2730 | . . . . 5 ⊢ ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂)) = ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂)) | |
| 3 | eqid 2730 | . . . . 5 ⊢ ((oppCat‘𝑄) ×c 𝑄) = ((oppCat‘𝑄) ×c 𝑄) | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂) | |
| 5 | yoneda.q | . . . . . . . 8 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
| 6 | yoneda.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 7 | yoneda.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 8 | 7 | oppccat 17690 | . . . . . . . . 9 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 10 | yoneda.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 11 | yoneda.v | . . . . . . . . . . 11 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) | |
| 12 | 11 | unssbd 4160 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 13 | 10, 12 | ssexd 5282 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ V) |
| 14 | yoneda.s | . . . . . . . . . 10 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 15 | 14 | setccat 18054 | . . . . . . . . 9 ⊢ (𝑈 ∈ V → 𝑆 ∈ Cat) |
| 16 | 13, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Cat) |
| 17 | 5, 9, 16 | fuccat 17942 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂) | |
| 19 | 4, 17, 9, 18 | 2ndfcl 18166 | . . . . . 6 ⊢ (𝜑 → (𝑄 2ndF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑂)) |
| 20 | eqid 2730 | . . . . . . . 8 ⊢ (oppCat‘𝑄) = (oppCat‘𝑄) | |
| 21 | relfunc 17831 | . . . . . . . . 9 ⊢ Rel (𝐶 Func 𝑄) | |
| 22 | yoneda.y | . . . . . . . . . 10 ⊢ 𝑌 = (Yon‘𝐶) | |
| 23 | yoneda.u | . . . . . . . . . 10 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
| 24 | 22, 6, 7, 14, 5, 13, 23 | yoncl 18230 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) |
| 25 | 1st2ndbr 8024 | . . . . . . . . 9 ⊢ ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) | |
| 26 | 21, 24, 25 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
| 27 | 7, 20, 26 | funcoppc 17844 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd ‘𝑌)) |
| 28 | df-br 5111 | . . . . . . 7 ⊢ ((1st ‘𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd ‘𝑌) ↔ 〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∈ (𝑂 Func (oppCat‘𝑄))) | |
| 29 | 27, 28 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∈ (𝑂 Func (oppCat‘𝑄))) |
| 30 | 19, 29 | cofucl 17857 | . . . . 5 ⊢ (𝜑 → (〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func (oppCat‘𝑄))) |
| 31 | eqid 2730 | . . . . . 6 ⊢ (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂) | |
| 32 | 4, 17, 9, 31 | 1stfcl 18165 | . . . . 5 ⊢ (𝜑 → (𝑄 1stF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑄)) |
| 33 | 2, 3, 30, 32 | prfcl 18171 | . . . 4 ⊢ (𝜑 → ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func ((oppCat‘𝑄) ×c 𝑄))) |
| 34 | yoneda.h | . . . . 5 ⊢ 𝐻 = (HomF‘𝑄) | |
| 35 | yoneda.t | . . . . 5 ⊢ 𝑇 = (SetCat‘𝑉) | |
| 36 | 11 | unssad 4159 | . . . . 5 ⊢ (𝜑 → ran (Homf ‘𝑄) ⊆ 𝑉) |
| 37 | 34, 20, 35, 17, 10, 36 | hofcl 18227 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (((oppCat‘𝑄) ×c 𝑄) Func 𝑇)) |
| 38 | 33, 37 | cofucl 17857 | . . 3 ⊢ (𝜑 → (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 39 | 1, 38 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 40 | 35, 14, 10, 12 | funcsetcres2 18062 | . . 3 ⊢ (𝜑 → ((𝑄 ×c 𝑂) Func 𝑆) ⊆ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 41 | yoneda.e | . . . 4 ⊢ 𝐸 = (𝑂 evalF 𝑆) | |
| 42 | 41, 5, 9, 16 | evlfcl 18190 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑆)) |
| 43 | 40, 42 | sseldd 3950 | . 2 ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 44 | 39, 43 | jca 511 | 1 ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 〈cop 4598 class class class wbr 5110 ran crn 5642 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 tpos ctpos 8207 Basecbs 17186 Catccat 17632 Idccid 17633 Homf chomf 17634 oppCatcoppc 17679 Func cfunc 17823 ∘func ccofu 17825 FuncCat cfuc 17914 SetCatcsetc 18044 ×c cxpc 18136 1stF c1stf 18137 2ndF c2ndf 18138 〈,〉F cprf 18139 evalF cevlf 18177 HomFchof 18216 Yoncyon 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-homf 17638 df-comf 17639 df-oppc 17680 df-ssc 17779 df-resc 17780 df-subc 17781 df-func 17827 df-cofu 17829 df-nat 17915 df-fuc 17916 df-setc 18045 df-xpc 18140 df-1stf 18141 df-2ndf 18142 df-prf 18143 df-evlf 18181 df-curf 18182 df-hof 18218 df-yon 18219 |
| This theorem is referenced by: yonedalem3b 18247 yonedalem3 18248 yonedainv 18249 yonffthlem 18250 yoneda 18251 |
| Copyright terms: Public domain | W3C validator |