MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem1 Structured version   Visualization version   GIF version

Theorem yonedalem1 18284
Description: Lemma for yoneda 18295. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
Assertion
Ref Expression
yonedalem1 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))

Proof of Theorem yonedalem1
StepHypRef Expression
1 yoneda.z . . 3 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
2 eqid 2735 . . . . 5 ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) = ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))
3 eqid 2735 . . . . 5 ((oppCat‘𝑄) ×c 𝑄) = ((oppCat‘𝑄) ×c 𝑄)
4 eqid 2735 . . . . . . 7 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
5 yoneda.q . . . . . . . 8 𝑄 = (𝑂 FuncCat 𝑆)
6 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
7 yoneda.o . . . . . . . . . 10 𝑂 = (oppCat‘𝐶)
87oppccat 17734 . . . . . . . . 9 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
96, 8syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Cat)
10 yoneda.w . . . . . . . . . 10 (𝜑𝑉𝑊)
11 yoneda.v . . . . . . . . . . 11 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
1211unssbd 4169 . . . . . . . . . 10 (𝜑𝑈𝑉)
1310, 12ssexd 5294 . . . . . . . . 9 (𝜑𝑈 ∈ V)
14 yoneda.s . . . . . . . . . 10 𝑆 = (SetCat‘𝑈)
1514setccat 18098 . . . . . . . . 9 (𝑈 ∈ V → 𝑆 ∈ Cat)
1613, 15syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Cat)
175, 9, 16fuccat 17986 . . . . . . 7 (𝜑𝑄 ∈ Cat)
18 eqid 2735 . . . . . . 7 (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂)
194, 17, 9, 182ndfcl 18210 . . . . . 6 (𝜑 → (𝑄 2ndF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑂))
20 eqid 2735 . . . . . . . 8 (oppCat‘𝑄) = (oppCat‘𝑄)
21 relfunc 17875 . . . . . . . . 9 Rel (𝐶 Func 𝑄)
22 yoneda.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
23 yoneda.u . . . . . . . . . 10 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2422, 6, 7, 14, 5, 13, 23yoncl 18274 . . . . . . . . 9 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
25 1st2ndbr 8041 . . . . . . . . 9 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
2621, 24, 25sylancr 587 . . . . . . . 8 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
277, 20, 26funcoppc 17888 . . . . . . 7 (𝜑 → (1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌))
28 df-br 5120 . . . . . . 7 ((1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌) ↔ ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
2927, 28sylib 218 . . . . . 6 (𝜑 → ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
3019, 29cofucl 17901 . . . . 5 (𝜑 → (⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func (oppCat‘𝑄)))
31 eqid 2735 . . . . . 6 (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂)
324, 17, 9, 311stfcl 18209 . . . . 5 (𝜑 → (𝑄 1stF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑄))
332, 3, 30, 32prfcl 18215 . . . 4 (𝜑 → ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func ((oppCat‘𝑄) ×c 𝑄)))
34 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
35 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
3611unssad 4168 . . . . 5 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
3734, 20, 35, 17, 10, 36hofcl 18271 . . . 4 (𝜑𝐻 ∈ (((oppCat‘𝑄) ×c 𝑄) Func 𝑇))
3833, 37cofucl 17901 . . 3 (𝜑 → (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))) ∈ ((𝑄 ×c 𝑂) Func 𝑇))
391, 38eqeltrid 2838 . 2 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
4035, 14, 10, 12funcsetcres2 18106 . . 3 (𝜑 → ((𝑄 ×c 𝑂) Func 𝑆) ⊆ ((𝑄 ×c 𝑂) Func 𝑇))
41 yoneda.e . . . 4 𝐸 = (𝑂 evalF 𝑆)
4241, 5, 9, 16evlfcl 18234 . . 3 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑆))
4340, 42sseldd 3959 . 2 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
4439, 43jca 511 1 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  cop 4607   class class class wbr 5119  ran crn 5655  Rel wrel 5659  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  tpos ctpos 8224  Basecbs 17228  Catccat 17676  Idccid 17677  Homf chomf 17678  oppCatcoppc 17723   Func cfunc 17867  func ccofu 17869   FuncCat cfuc 17958  SetCatcsetc 18088   ×c cxpc 18180   1stF c1stf 18181   2ndF c2ndf 18182   ⟨,⟩F cprf 18183   evalF cevlf 18221  HomFchof 18260  Yoncyon 18261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-hom 17295  df-cco 17296  df-cat 17680  df-cid 17681  df-homf 17682  df-comf 17683  df-oppc 17724  df-ssc 17823  df-resc 17824  df-subc 17825  df-func 17871  df-cofu 17873  df-nat 17959  df-fuc 17960  df-setc 18089  df-xpc 18184  df-1stf 18185  df-2ndf 18186  df-prf 18187  df-evlf 18225  df-curf 18226  df-hof 18262  df-yon 18263
This theorem is referenced by:  yonedalem3b  18291  yonedalem3  18292  yonedainv  18293  yonffthlem  18294  yoneda  18295
  Copyright terms: Public domain W3C validator