| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonedalem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for yoneda 18226. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| yoneda.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yoneda.b | ⊢ 𝐵 = (Base‘𝐶) |
| yoneda.1 | ⊢ 1 = (Id‘𝐶) |
| yoneda.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yoneda.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| yoneda.t | ⊢ 𝑇 = (SetCat‘𝑉) |
| yoneda.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
| yoneda.h | ⊢ 𝐻 = (HomF‘𝑄) |
| yoneda.r | ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
| yoneda.e | ⊢ 𝐸 = (𝑂 evalF 𝑆) |
| yoneda.z | ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) |
| yoneda.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yoneda.w | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| yoneda.u | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
| yoneda.v | ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| yonedalem1 | ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yoneda.z | . . 3 ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
| 2 | eqid 2729 | . . . . 5 ⊢ ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂)) = ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂)) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ((oppCat‘𝑄) ×c 𝑄) = ((oppCat‘𝑄) ×c 𝑄) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂) | |
| 5 | yoneda.q | . . . . . . . 8 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
| 6 | yoneda.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 7 | yoneda.o | . . . . . . . . . 10 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 8 | 7 | oppccat 17665 | . . . . . . . . 9 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 9 | 6, 8 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 10 | yoneda.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 11 | yoneda.v | . . . . . . . . . . 11 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) | |
| 12 | 11 | unssbd 4153 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 13 | 10, 12 | ssexd 5274 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ V) |
| 14 | yoneda.s | . . . . . . . . . 10 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 15 | 14 | setccat 18029 | . . . . . . . . 9 ⊢ (𝑈 ∈ V → 𝑆 ∈ Cat) |
| 16 | 13, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Cat) |
| 17 | 5, 9, 16 | fuccat 17917 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂) | |
| 19 | 4, 17, 9, 18 | 2ndfcl 18141 | . . . . . 6 ⊢ (𝜑 → (𝑄 2ndF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑂)) |
| 20 | eqid 2729 | . . . . . . . 8 ⊢ (oppCat‘𝑄) = (oppCat‘𝑄) | |
| 21 | relfunc 17806 | . . . . . . . . 9 ⊢ Rel (𝐶 Func 𝑄) | |
| 22 | yoneda.y | . . . . . . . . . 10 ⊢ 𝑌 = (Yon‘𝐶) | |
| 23 | yoneda.u | . . . . . . . . . 10 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
| 24 | 22, 6, 7, 14, 5, 13, 23 | yoncl 18205 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) |
| 25 | 1st2ndbr 8001 | . . . . . . . . 9 ⊢ ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) | |
| 26 | 21, 24, 25 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
| 27 | 7, 20, 26 | funcoppc 17819 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd ‘𝑌)) |
| 28 | df-br 5103 | . . . . . . 7 ⊢ ((1st ‘𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd ‘𝑌) ↔ 〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∈ (𝑂 Func (oppCat‘𝑄))) | |
| 29 | 27, 28 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∈ (𝑂 Func (oppCat‘𝑄))) |
| 30 | 19, 29 | cofucl 17832 | . . . . 5 ⊢ (𝜑 → (〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func (oppCat‘𝑄))) |
| 31 | eqid 2729 | . . . . . 6 ⊢ (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂) | |
| 32 | 4, 17, 9, 31 | 1stfcl 18140 | . . . . 5 ⊢ (𝜑 → (𝑄 1stF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑄)) |
| 33 | 2, 3, 30, 32 | prfcl 18146 | . . . 4 ⊢ (𝜑 → ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func ((oppCat‘𝑄) ×c 𝑄))) |
| 34 | yoneda.h | . . . . 5 ⊢ 𝐻 = (HomF‘𝑄) | |
| 35 | yoneda.t | . . . . 5 ⊢ 𝑇 = (SetCat‘𝑉) | |
| 36 | 11 | unssad 4152 | . . . . 5 ⊢ (𝜑 → ran (Homf ‘𝑄) ⊆ 𝑉) |
| 37 | 34, 20, 35, 17, 10, 36 | hofcl 18202 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (((oppCat‘𝑄) ×c 𝑄) Func 𝑇)) |
| 38 | 33, 37 | cofucl 17832 | . . 3 ⊢ (𝜑 → (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 39 | 1, 38 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 40 | 35, 14, 10, 12 | funcsetcres2 18037 | . . 3 ⊢ (𝜑 → ((𝑄 ×c 𝑂) Func 𝑆) ⊆ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 41 | yoneda.e | . . . 4 ⊢ 𝐸 = (𝑂 evalF 𝑆) | |
| 42 | 41, 5, 9, 16 | evlfcl 18165 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑆)) |
| 43 | 40, 42 | sseldd 3944 | . 2 ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
| 44 | 39, 43 | jca 511 | 1 ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 〈cop 4591 class class class wbr 5102 ran crn 5632 Rel wrel 5636 ‘cfv 6500 (class class class)co 7370 1st c1st 7946 2nd c2nd 7947 tpos ctpos 8182 Basecbs 17157 Catccat 17607 Idccid 17608 Homf chomf 17609 oppCatcoppc 17654 Func cfunc 17798 ∘func ccofu 17800 FuncCat cfuc 17889 SetCatcsetc 18019 ×c cxpc 18111 1stF c1stf 18112 2ndF c2ndf 18113 〈,〉F cprf 18114 evalF cevlf 18152 HomFchof 18191 Yoncyon 18192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-tpos 8183 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-hom 17222 df-cco 17223 df-cat 17611 df-cid 17612 df-homf 17613 df-comf 17614 df-oppc 17655 df-ssc 17754 df-resc 17755 df-subc 17756 df-func 17802 df-cofu 17804 df-nat 17890 df-fuc 17891 df-setc 18020 df-xpc 18115 df-1stf 18116 df-2ndf 18117 df-prf 18118 df-evlf 18156 df-curf 18157 df-hof 18193 df-yon 18194 |
| This theorem is referenced by: yonedalem3b 18222 yonedalem3 18223 yonedainv 18224 yonffthlem 18225 yoneda 18226 |
| Copyright terms: Public domain | W3C validator |