| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmsp | Structured version Visualization version GIF version | ||
| Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmsp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmsp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmsp.p | ⊢ ⊕ = (LSSum‘𝑊) |
| Ref | Expression |
|---|---|
| lsmsp | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
| 2 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | lsmsp.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssss 20871 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑆 → 𝑇 ⊆ (Base‘𝑊)) |
| 5 | 4 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (Base‘𝑊)) |
| 6 | 2, 3 | lssss 20871 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 7 | 6 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 8 | 5, 7 | unssd 4141 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) |
| 9 | lsmsp.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 2, 9 | lspssid 20920 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 12 | 11 | unssad 4142 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 13 | 11 | unssbd 4143 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 14 | 3 | lsssssubg 20893 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 16 | simp2 1137 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ 𝑆) | |
| 17 | 15, 16 | sseldd 3931 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 18 | simp3 1138 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ 𝑆) | |
| 19 | 15, 18 | sseldd 3931 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 20 | 2, 3, 9 | lspcl 20911 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
| 21 | 1, 8, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
| 22 | 15, 21 | sseldd 3931 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) |
| 23 | lsmsp.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
| 24 | 23 | lsmlub 19578 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
| 25 | 17, 19, 22, 24 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
| 26 | 12, 13, 25 | mpbi2and 712 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 27 | 3, 23 | lsmcl 21019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
| 28 | 23 | lsmunss 19573 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| 29 | 17, 19, 28 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| 30 | 3, 9 | lspssp 20923 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝑆 ∧ (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
| 31 | 1, 27, 29, 30 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
| 32 | 26, 31 | eqssd 3948 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 SubGrpcsubg 19035 LSSumclsm 19548 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20797 df-lss 20867 df-lsp 20907 |
| This theorem is referenced by: lsmsp2 21023 lsmpr 21025 lsppr 21029 lsmidllsp 33372 islshpsm 39099 lshpnel2N 39104 lkrlsp3 39223 djhlsmcl 41533 dochsatshp 41570 |
| Copyright terms: Public domain | W3C validator |