MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsp Structured version   Visualization version   GIF version

Theorem lsmsp 19850
Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.)
Hypotheses
Ref Expression
lsmsp.s 𝑆 = (LSubSp‘𝑊)
lsmsp.n 𝑁 = (LSpan‘𝑊)
lsmsp.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmsp ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑁‘(𝑇𝑈)))

Proof of Theorem lsmsp
StepHypRef Expression
1 simp1 1131 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ LMod)
2 eqid 2819 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
3 lsmsp.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
42, 3lssss 19700 . . . . . . 7 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
543ad2ant2 1129 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝑊))
62, 3lssss 19700 . . . . . . 7 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
763ad2ant3 1130 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
85, 7unssd 4160 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ⊆ (Base‘𝑊))
9 lsmsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
102, 9lspssid 19749 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ (Base‘𝑊)) → (𝑇𝑈) ⊆ (𝑁‘(𝑇𝑈)))
111, 8, 10syl2anc 586 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1211unssad 4161 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (𝑁‘(𝑇𝑈)))
1311unssbd 4162 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (𝑁‘(𝑇𝑈)))
143lsssssubg 19722 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
15143ad2ant1 1128 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1132 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇𝑆)
1715, 16sseldd 3966 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
18 simp3 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈𝑆)
1915, 18sseldd 3966 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
202, 3, 9lspcl 19740 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇𝑈)) ∈ 𝑆)
211, 8, 20syl2anc 586 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑁‘(𝑇𝑈)) ∈ 𝑆)
2215, 21sseldd 3966 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑁‘(𝑇𝑈)) ∈ (SubGrp‘𝑊))
23 lsmsp.p . . . . 5 = (LSSum‘𝑊)
2423lsmlub 18782 . . . 4 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇𝑈))) ↔ (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈))))
2517, 19, 22, 24syl3anc 1366 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇𝑈))) ↔ (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈))))
2612, 13, 25mpbi2and 710 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))
273, 23lsmcl 19847 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
2823lsmunss 18776 . . . 4 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇𝑈) ⊆ (𝑇 𝑈))
2917, 19, 28syl2anc 586 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ⊆ (𝑇 𝑈))
303, 9lspssp 19752 . . 3 ((𝑊 ∈ LMod ∧ (𝑇 𝑈) ∈ 𝑆 ∧ (𝑇𝑈) ⊆ (𝑇 𝑈)) → (𝑁‘(𝑇𝑈)) ⊆ (𝑇 𝑈))
311, 27, 29, 30syl3anc 1366 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑁‘(𝑇𝑈)) ⊆ (𝑇 𝑈))
3226, 31eqssd 3982 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑁‘(𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  cun 3932  wss 3934  cfv 6348  (class class class)co 7148  Basecbs 16475  SubGrpcsubg 18265  LSSumclsm 18751  LModclmod 19626  LSubSpclss 19695  LSpanclspn 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-lmod 19628  df-lss 19696  df-lsp 19736
This theorem is referenced by:  lsmsp2  19851  lsmpr  19853  lsppr  19857  lsmidllsp  30943  islshpsm  36108  lshpnel2N  36113  lkrlsp3  36232  djhlsmcl  38542  dochsatshp  38579
  Copyright terms: Public domain W3C validator