| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmsp | Structured version Visualization version GIF version | ||
| Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmsp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsmsp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmsp.p | ⊢ ⊕ = (LSSum‘𝑊) |
| Ref | Expression |
|---|---|
| lsmsp | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
| 2 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | lsmsp.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssss 20902 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑆 → 𝑇 ⊆ (Base‘𝑊)) |
| 5 | 4 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (Base‘𝑊)) |
| 6 | 2, 3 | lssss 20902 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 7 | 6 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 8 | 5, 7 | unssd 4172 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) |
| 9 | lsmsp.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 2, 9 | lspssid 20951 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 12 | 11 | unssad 4173 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 13 | 11 | unssbd 4174 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 14 | 3 | lsssssubg 20924 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 15 | 14 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 16 | simp2 1137 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ 𝑆) | |
| 17 | 15, 16 | sseldd 3964 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 18 | simp3 1138 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ 𝑆) | |
| 19 | 15, 18 | sseldd 3964 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 20 | 2, 3, 9 | lspcl 20942 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
| 21 | 1, 8, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
| 22 | 15, 21 | sseldd 3964 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) |
| 23 | lsmsp.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
| 24 | 23 | lsmlub 19650 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
| 25 | 17, 19, 22, 24 | syl3anc 1372 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
| 26 | 12, 13, 25 | mpbi2and 712 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
| 27 | 3, 23 | lsmcl 21050 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
| 28 | 23 | lsmunss 19645 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| 29 | 17, 19, 28 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| 30 | 3, 9 | lspssp 20954 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝑆 ∧ (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
| 31 | 1, 27, 29, 30 | syl3anc 1372 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
| 32 | 26, 31 | eqssd 3981 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 SubGrpcsubg 19107 LSSumclsm 19620 LModclmod 20826 LSubSpclss 20897 LSpanclspn 20937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cntz 19304 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20828 df-lss 20898 df-lsp 20938 |
| This theorem is referenced by: lsmsp2 21054 lsmpr 21056 lsppr 21060 lsmidllsp 33363 islshpsm 38940 lshpnel2N 38945 lkrlsp3 39064 djhlsmcl 41375 dochsatshp 41412 |
| Copyright terms: Public domain | W3C validator |