![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmsp | Structured version Visualization version GIF version |
Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lsmsp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsmsp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsmsp.p | ⊢ ⊕ = (LSSum‘𝑊) |
Ref | Expression |
---|---|
lsmsp | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1116 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
2 | eqid 2772 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lsmsp.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssss 19420 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑆 → 𝑇 ⊆ (Base‘𝑊)) |
5 | 4 | 3ad2ant2 1114 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (Base‘𝑊)) |
6 | 2, 3 | lssss 19420 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
7 | 6 | 3ad2ant3 1115 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
8 | 5, 7 | unssd 4046 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) |
9 | lsmsp.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 2, 9 | lspssid 19469 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
11 | 1, 8, 10 | syl2anc 576 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
12 | 11 | unssad 4047 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
13 | 11 | unssbd 4048 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
14 | 3 | lsssssubg 19442 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
15 | 14 | 3ad2ant1 1113 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝑊)) |
16 | simp2 1117 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ 𝑆) | |
17 | 15, 16 | sseldd 3855 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ (SubGrp‘𝑊)) |
18 | simp3 1118 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ 𝑆) | |
19 | 15, 18 | sseldd 3855 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
20 | 2, 3, 9 | lspcl 19460 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
21 | 1, 8, 20 | syl2anc 576 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
22 | 15, 21 | sseldd 3855 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) |
23 | lsmsp.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
24 | 23 | lsmlub 18539 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
25 | 17, 19, 22, 24 | syl3anc 1351 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
26 | 12, 13, 25 | mpbi2and 699 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
27 | 3, 23 | lsmcl 19567 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
28 | 23 | lsmunss 18534 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
29 | 17, 19, 28 | syl2anc 576 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
30 | 3, 9 | lspssp 19472 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝑆 ∧ (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
31 | 1, 27, 29, 30 | syl3anc 1351 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
32 | 26, 31 | eqssd 3871 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∪ cun 3823 ⊆ wss 3825 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 SubGrpcsubg 18047 LSSumclsm 18510 LModclmod 19346 LSubSpclss 19415 LSpanclspn 19455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-submnd 17794 df-grp 17884 df-minusg 17885 df-sbg 17886 df-subg 18050 df-cntz 18208 df-lsm 18512 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-lmod 19348 df-lss 19416 df-lsp 19456 |
This theorem is referenced by: lsmsp2 19571 lsmpr 19573 lsppr 19577 islshpsm 35509 lshpnel2N 35514 lkrlsp3 35633 djhlsmcl 37943 dochsatshp 37980 |
Copyright terms: Public domain | W3C validator |