Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β π β LMod) |
2 | | eqid 2730 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
3 | | lsmsp.s |
. . . . . . . 8
β’ π = (LSubSpβπ) |
4 | 2, 3 | lssss 20693 |
. . . . . . 7
β’ (π β π β π β (Baseβπ)) |
5 | 4 | 3ad2ant2 1132 |
. . . . . 6
β’ ((π β LMod β§ π β π β§ π β π) β π β (Baseβπ)) |
6 | 2, 3 | lssss 20693 |
. . . . . . 7
β’ (π β π β π β (Baseβπ)) |
7 | 6 | 3ad2ant3 1133 |
. . . . . 6
β’ ((π β LMod β§ π β π β§ π β π) β π β (Baseβπ)) |
8 | 5, 7 | unssd 4187 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β (π βͺ π) β (Baseβπ)) |
9 | | lsmsp.n |
. . . . . 6
β’ π = (LSpanβπ) |
10 | 2, 9 | lspssid 20742 |
. . . . 5
β’ ((π β LMod β§ (π βͺ π) β (Baseβπ)) β (π βͺ π) β (πβ(π βͺ π))) |
11 | 1, 8, 10 | syl2anc 582 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β (π βͺ π) β (πβ(π βͺ π))) |
12 | 11 | unssad 4188 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β (πβ(π βͺ π))) |
13 | 11 | unssbd 4189 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β (πβ(π βͺ π))) |
14 | 3 | lsssssubg 20715 |
. . . . . 6
β’ (π β LMod β π β (SubGrpβπ)) |
15 | 14 | 3ad2ant1 1131 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β π β (SubGrpβπ)) |
16 | | simp2 1135 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
17 | 15, 16 | sseldd 3984 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β π β (SubGrpβπ)) |
18 | | simp3 1136 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
19 | 15, 18 | sseldd 3984 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β π β (SubGrpβπ)) |
20 | 2, 3, 9 | lspcl 20733 |
. . . . . 6
β’ ((π β LMod β§ (π βͺ π) β (Baseβπ)) β (πβ(π βͺ π)) β π) |
21 | 1, 8, 20 | syl2anc 582 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β (πβ(π βͺ π)) β π) |
22 | 15, 21 | sseldd 3984 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β (πβ(π βͺ π)) β (SubGrpβπ)) |
23 | | lsmsp.p |
. . . . 5
β’ β =
(LSSumβπ) |
24 | 23 | lsmlub 19575 |
. . . 4
β’ ((π β (SubGrpβπ) β§ π β (SubGrpβπ) β§ (πβ(π βͺ π)) β (SubGrpβπ)) β ((π β (πβ(π βͺ π)) β§ π β (πβ(π βͺ π))) β (π β π) β (πβ(π βͺ π)))) |
25 | 17, 19, 22, 24 | syl3anc 1369 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β ((π β (πβ(π βͺ π)) β§ π β (πβ(π βͺ π))) β (π β π) β (πβ(π βͺ π)))) |
26 | 12, 13, 25 | mpbi2and 708 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β (π β π) β (πβ(π βͺ π))) |
27 | 3, 23 | lsmcl 20840 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β (π β π) β π) |
28 | 23 | lsmunss 19570 |
. . . 4
β’ ((π β (SubGrpβπ) β§ π β (SubGrpβπ)) β (π βͺ π) β (π β π)) |
29 | 17, 19, 28 | syl2anc 582 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β (π βͺ π) β (π β π)) |
30 | 3, 9 | lspssp 20745 |
. . 3
β’ ((π β LMod β§ (π β π) β π β§ (π βͺ π) β (π β π)) β (πβ(π βͺ π)) β (π β π)) |
31 | 1, 27, 29, 30 | syl3anc 1369 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β (πβ(π βͺ π)) β (π β π)) |
32 | 26, 31 | eqssd 4000 |
1
β’ ((π β LMod β§ π β π β§ π β π) β (π β π) = (πβ(π βͺ π))) |