![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmsp | Structured version Visualization version GIF version |
Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lsmsp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsmsp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsmsp.p | ⊢ ⊕ = (LSSum‘𝑊) |
Ref | Expression |
---|---|
lsmsp | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) | |
2 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lsmsp.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssss 20952 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑆 → 𝑇 ⊆ (Base‘𝑊)) |
5 | 4 | 3ad2ant2 1133 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (Base‘𝑊)) |
6 | 2, 3 | lssss 20952 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
7 | 6 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
8 | 5, 7 | unssd 4202 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) |
9 | lsmsp.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 2, 9 | lspssid 21001 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
11 | 1, 8, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
12 | 11 | unssad 4203 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
13 | 11 | unssbd 4204 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
14 | 3 | lsssssubg 20974 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
15 | 14 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝑊)) |
16 | simp2 1136 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ 𝑆) | |
17 | 15, 16 | sseldd 3996 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑇 ∈ (SubGrp‘𝑊)) |
18 | simp3 1137 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ 𝑆) | |
19 | 15, 18 | sseldd 3996 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
20 | 2, 3, 9 | lspcl 20992 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ∪ 𝑈) ⊆ (Base‘𝑊)) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
21 | 1, 8, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ 𝑆) |
22 | 15, 21 | sseldd 3996 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) |
23 | lsmsp.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
24 | 23 | lsmlub 19697 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘(𝑇 ∪ 𝑈)) ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
25 | 17, 19, 22, 24 | syl3anc 1370 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → ((𝑇 ⊆ (𝑁‘(𝑇 ∪ 𝑈)) ∧ 𝑈 ⊆ (𝑁‘(𝑇 ∪ 𝑈))) ↔ (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈)))) |
26 | 12, 13, 25 | mpbi2and 712 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) |
27 | 3, 23 | lsmcl 21100 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) ∈ 𝑆) |
28 | 23 | lsmunss 19692 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
29 | 17, 19, 28 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
30 | 3, 9 | lspssp 21004 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑇 ⊕ 𝑈) ∈ 𝑆 ∧ (𝑇 ∪ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
31 | 1, 27, 29, 30 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑁‘(𝑇 ∪ 𝑈)) ⊆ (𝑇 ⊕ 𝑈)) |
32 | 26, 31 | eqssd 4013 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑁‘(𝑇 ∪ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 SubGrpcsubg 19151 LSSumclsm 19667 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-lsp 20988 |
This theorem is referenced by: lsmsp2 21104 lsmpr 21106 lsppr 21110 lsmidllsp 33408 islshpsm 38962 lshpnel2N 38967 lkrlsp3 39086 djhlsmcl 41397 dochsatshp 41434 |
Copyright terms: Public domain | W3C validator |