Step | Hyp | Ref
| Expression |
1 | | elfvex 6789 |
. . . . . . . 8
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) |
2 | | isust 23263 |
. . . . . . . 8
⊢ (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) |
4 | 3 | ibi 266 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)))) |
5 | 4 | simp3d 1142 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))) |
6 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → (𝑣 ⊆ 𝑤 ↔ 𝑉 ⊆ 𝑤)) |
7 | 6 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → ((𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ↔ (𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈))) |
8 | 7 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈))) |
9 | | ineq1 4136 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → (𝑣 ∩ 𝑤) = (𝑉 ∩ 𝑤)) |
10 | 9 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → ((𝑣 ∩ 𝑤) ∈ 𝑈 ↔ (𝑉 ∩ 𝑤) ∈ 𝑈)) |
11 | 10 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → (∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ↔ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈)) |
12 | | sseq2 3943 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → (( I ↾ 𝑋) ⊆ 𝑣 ↔ ( I ↾ 𝑋) ⊆ 𝑉)) |
13 | | cnveq 5771 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → ◡𝑣 = ◡𝑉) |
14 | 13 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → (◡𝑣 ∈ 𝑈 ↔ ◡𝑉 ∈ 𝑈)) |
15 | | sseq2 3943 |
. . . . . . . . 9
⊢ (𝑣 = 𝑉 → ((𝑤 ∘ 𝑤) ⊆ 𝑣 ↔ (𝑤 ∘ 𝑤) ⊆ 𝑉)) |
16 | 15 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑣 = 𝑉 → (∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣 ↔ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)) |
17 | 12, 14, 16 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑣 = 𝑉 → ((( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉))) |
18 | 8, 11, 17 | 3anbi123d 1434 |
. . . . . 6
⊢ (𝑣 = 𝑉 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)))) |
19 | 18 | rspcv 3547 |
. . . . 5
⊢ (𝑉 ∈ 𝑈 → (∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉)))) |
20 | 5, 19 | mpan9 506 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑉 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑉 ∧ ◡𝑉 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉))) |
21 | 20 | simp2d 1141 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈) |
22 | | ineq2 4137 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑉 ∩ 𝑤) = (𝑉 ∩ 𝑊)) |
23 | 22 | eleq1d 2823 |
. . . 4
⊢ (𝑤 = 𝑊 → ((𝑉 ∩ 𝑤) ∈ 𝑈 ↔ (𝑉 ∩ 𝑊) ∈ 𝑈)) |
24 | 23 | rspcv 3547 |
. . 3
⊢ (𝑊 ∈ 𝑈 → (∀𝑤 ∈ 𝑈 (𝑉 ∩ 𝑤) ∈ 𝑈 → (𝑉 ∩ 𝑊) ∈ 𝑈)) |
25 | 21, 24 | mpan9 506 |
. 2
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑊 ∈ 𝑈) → (𝑉 ∩ 𝑊) ∈ 𝑈) |
26 | 25 | 3impa 1108 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈) → (𝑉 ∩ 𝑊) ∈ 𝑈) |