| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspthnon | Structured version Visualization version GIF version | ||
| Description: An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 15-Mar-2022.) |
| Ref | Expression |
|---|---|
| wspthnon | ⊢ (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝑤 = 𝑊 → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) |
| 3 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 4 | 3 | iswspthsnon 29820 | . 2 ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} |
| 5 | 2, 4 | elrab2 3653 | 1 ⊢ (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28960 SPathsOncspthson 29677 WWalksNOn cwwlksnon 29791 WSPathsNOn cwwspthsnon 29793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-wwlksnon 29796 df-wspthsnon 29798 |
| This theorem is referenced by: wspthnonp 29823 wspthsnwspthsnon 29880 elwspths2on 29924 elwspths2spth 29931 |
| Copyright terms: Public domain | W3C validator |