MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnon Structured version   Visualization version   GIF version

Theorem wspthnon 29888
Description: An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 15-Mar-2022.)
Assertion
Ref Expression
wspthnon (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐺   𝑓,𝑁   𝑓,𝑊

Proof of Theorem wspthnon
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . 3 (𝑤 = 𝑊 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
21exbidv 1919 . 2 (𝑤 = 𝑊 → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
3 eqid 2735 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
43iswspthsnon 29886 . 2 (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤}
52, 4elrab2 3698 1 (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Vtxcvtx 29028  SPathsOncspthson 29748   WWalksNOn cwwlksnon 29857   WSPathsNOn cwwspthsnon 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-wwlksnon 29862  df-wspthsnon 29864
This theorem is referenced by:  wspthnonp  29889  wspthsnwspthsnon  29946  elwspths2on  29990  elwspths2spth  29997
  Copyright terms: Public domain W3C validator