![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspthnon | Structured version Visualization version GIF version |
Description: An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 15-Mar-2022.) |
Ref | Expression |
---|---|
wspthnon | β’ (π β (π΄(π WSPathsNOn πΊ)π΅) β (π β (π΄(π WWalksNOn πΊ)π΅) β§ βπ π(π΄(SPathsOnβπΊ)π΅)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . 3 β’ (π€ = π β (π(π΄(SPathsOnβπΊ)π΅)π€ β π(π΄(SPathsOnβπΊ)π΅)π)) | |
2 | 1 | exbidv 1924 | . 2 β’ (π€ = π β (βπ π(π΄(SPathsOnβπΊ)π΅)π€ β βπ π(π΄(SPathsOnβπΊ)π΅)π)) |
3 | eqid 2732 | . . 3 β’ (VtxβπΊ) = (VtxβπΊ) | |
4 | 3 | iswspthsnon 29365 | . 2 β’ (π΄(π WSPathsNOn πΊ)π΅) = {π€ β (π΄(π WWalksNOn πΊ)π΅) β£ βπ π(π΄(SPathsOnβπΊ)π΅)π€} |
5 | 2, 4 | elrab2 3686 | 1 β’ (π β (π΄(π WSPathsNOn πΊ)π΅) β (π β (π΄(π WWalksNOn πΊ)π΅) β§ βπ π(π΄(SPathsOnβπΊ)π΅)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 βwex 1781 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Vtxcvtx 28511 SPathsOncspthson 29227 WWalksNOn cwwlksnon 29336 WSPathsNOn cwwspthsnon 29338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-wwlksnon 29341 df-wspthsnon 29343 |
This theorem is referenced by: wspthnonp 29368 wspthsnwspthsnon 29425 elwspths2on 29469 elwspths2spth 29476 |
Copyright terms: Public domain | W3C validator |