![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlknon | Structured version Visualization version GIF version |
Description: An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlknon | ⢠(ð â (ðŽ(ð WWalksNOn ðº)ðµ) â (ð â (ð WWalksN ðº) ⧠(ðâ0) = ðŽ ⧠(ðâð) = ðµ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6890 | . . . . 5 ⢠(ð€ = ð â (ð€â0) = (ðâ0)) | |
2 | 1 | eqeq1d 2734 | . . . 4 ⢠(ð€ = ð â ((ð€â0) = ðŽ â (ðâ0) = ðŽ)) |
3 | fveq1 6890 | . . . . 5 ⢠(ð€ = ð â (ð€âð) = (ðâð)) | |
4 | 3 | eqeq1d 2734 | . . . 4 ⢠(ð€ = ð â ((ð€âð) = ðµ â (ðâð) = ðµ)) |
5 | 2, 4 | anbi12d 631 | . . 3 ⢠(ð€ = ð â (((ð€â0) = ðŽ ⧠(ð€âð) = ðµ) â ((ðâ0) = ðŽ ⧠(ðâð) = ðµ))) |
6 | eqid 2732 | . . . 4 ⢠(Vtxâðº) = (Vtxâðº) | |
7 | 6 | iswwlksnon 29362 | . . 3 ⢠(ðŽ(ð WWalksNOn ðº)ðµ) = {ð€ â (ð WWalksN ðº) ⣠((ð€â0) = ðŽ ⧠(ð€âð) = ðµ)} |
8 | 5, 7 | elrab2 3686 | . 2 ⢠(ð â (ðŽ(ð WWalksNOn ðº)ðµ) â (ð â (ð WWalksN ðº) ⧠((ðâ0) = ðŽ ⧠(ðâð) = ðµ))) |
9 | 3anass 1095 | . 2 ⢠((ð â (ð WWalksN ðº) ⧠(ðâ0) = ðŽ ⧠(ðâð) = ðµ) â (ð â (ð WWalksN ðº) ⧠((ðâ0) = ðŽ ⧠(ðâð) = ðµ))) | |
10 | 8, 9 | bitr4i 277 | 1 ⢠(ð â (ðŽ(ð WWalksNOn ðº)ðµ) â (ð â (ð WWalksN ðº) ⧠(ðâ0) = ðŽ ⧠(ðâð) = ðµ)) |
Colors of variables: wff setvar class |
Syntax hints: â wb 205 ⧠wa 396 ⧠w3a 1087 = wceq 1541 â wcel 2106 âcfv 6543 (class class class)co 7411 0cc0 11112 Vtxcvtx 28511 WWalksN cwwlksn 29335 WWalksNOn cwwlksnon 29336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-wwlks 29339 df-wwlksn 29340 df-wwlksnon 29341 |
This theorem is referenced by: wwlksnwwlksnon 29424 wspthsnwspthsnon 29425 wspthsnonn0vne 29426 wwlks2onv 29462 elwwlks2ons3im 29463 s3wwlks2on 29465 wpthswwlks2on 29470 elwspths2spth 29476 clwwlknonwwlknonb 29614 |
Copyright terms: Public domain | W3C validator |