MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknon Structured version   Visualization version   GIF version

Theorem wwlknon 27337
Description: An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Assertion
Ref Expression
wwlknon (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵))

Proof of Theorem wwlknon
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6492 . . . . 5 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
21eqeq1d 2774 . . . 4 (𝑤 = 𝑊 → ((𝑤‘0) = 𝐴 ↔ (𝑊‘0) = 𝐴))
3 fveq1 6492 . . . . 5 (𝑤 = 𝑊 → (𝑤𝑁) = (𝑊𝑁))
43eqeq1d 2774 . . . 4 (𝑤 = 𝑊 → ((𝑤𝑁) = 𝐵 ↔ (𝑊𝑁) = 𝐵))
52, 4anbi12d 621 . . 3 (𝑤 = 𝑊 → (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵)))
6 eqid 2772 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
76iswwlksnon 27333 . . 3 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
85, 7elrab2 3593 . 2 (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵)))
9 3anass 1076 . 2 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵)))
108, 9bitr4i 270 1 (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  cfv 6182  (class class class)co 6970  0cc0 10329  Vtxcvtx 26478   WWalksN cwwlksn 27306   WWalksNOn cwwlksnon 27307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-n0 11702  df-z 11788  df-uz 12053  df-fz 12703  df-fzo 12844  df-hash 13500  df-word 13667  df-wwlks 27310  df-wwlksn 27311  df-wwlksnon 27312
This theorem is referenced by:  wwlksnwwlksnon  27415  wspthsnwspthsnon  27416  wspthsnonn0vne  27417  wwlks2onv  27453  elwwlks2ons3im  27454  s3wwlks2on  27456  wpthswwlks2on  27461  elwspths2spth  27467  clwwlknonwwlknonb  27628
  Copyright terms: Public domain W3C validator