![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlknon | Structured version Visualization version GIF version |
Description: An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlknon | ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6913 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0)) | |
2 | 1 | eqeq1d 2739 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘0) = 𝐴 ↔ (𝑊‘0) = 𝐴)) |
3 | fveq1 6913 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑤‘𝑁) = (𝑊‘𝑁)) | |
4 | 3 | eqeq1d 2739 | . . . 4 ⊢ (𝑤 = 𝑊 → ((𝑤‘𝑁) = 𝐵 ↔ (𝑊‘𝑁) = 𝐵)) |
5 | 2, 4 | anbi12d 632 | . . 3 ⊢ (𝑤 = 𝑊 → (((𝑤‘0) = 𝐴 ∧ (𝑤‘𝑁) = 𝐵) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵))) |
6 | eqid 2737 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
7 | 6 | iswwlksnon 29899 | . . 3 ⊢ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤‘𝑁) = 𝐵)} |
8 | 5, 7 | elrab2 3701 | . 2 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵))) |
9 | 3anass 1095 | . 2 ⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵))) | |
10 | 8, 9 | bitr4i 278 | 1 ⊢ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘𝑁) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 0cc0 11162 Vtxcvtx 29039 WWalksN cwwlksn 29872 WWalksNOn cwwlksnon 29873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-wwlks 29876 df-wwlksn 29877 df-wwlksnon 29878 |
This theorem is referenced by: wwlksnwwlksnon 29961 wspthsnwspthsnon 29962 wspthsnonn0vne 29963 wwlks2onv 29999 elwwlks2ons3im 30000 s3wwlks2on 30002 wpthswwlks2on 30007 elwspths2spth 30013 clwwlknonwwlknonb 30151 |
Copyright terms: Public domain | W3C validator |