MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknon Structured version   Visualization version   GIF version

Theorem wwlknon 29856
Description: An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Assertion
Ref Expression
wwlknon (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵))

Proof of Theorem wwlknon
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6830 . . . . 5 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
21eqeq1d 2735 . . . 4 (𝑤 = 𝑊 → ((𝑤‘0) = 𝐴 ↔ (𝑊‘0) = 𝐴))
3 fveq1 6830 . . . . 5 (𝑤 = 𝑊 → (𝑤𝑁) = (𝑊𝑁))
43eqeq1d 2735 . . . 4 (𝑤 = 𝑊 → ((𝑤𝑁) = 𝐵 ↔ (𝑊𝑁) = 𝐵))
52, 4anbi12d 632 . . 3 (𝑤 = 𝑊 → (((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵)))
6 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
76iswwlksnon 29852 . . 3 (𝐴(𝑁 WWalksNOn 𝐺)𝐵) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝐴 ∧ (𝑤𝑁) = 𝐵)}
85, 7elrab2 3646 . 2 (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵)))
9 3anass 1094 . 2 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵)))
108, 9bitr4i 278 1 (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊𝑁) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  0cc0 11017  Vtxcvtx 28995   WWalksN cwwlksn 29825   WWalksNOn cwwlksnon 29826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-wwlks 29829  df-wwlksn 29830  df-wwlksnon 29831
This theorem is referenced by:  wwlksnwwlksnon  29914  wspthsnwspthsnon  29915  wspthsnonn0vne  29916  wwlks2onv  29952  elwwlks2ons3im  29953  s3wwlks2on  29955  sps3wwlks2on  29956  wpthswwlks2on  29963  elwspths2spth  29969  clwwlknonwwlknonb  30107
  Copyright terms: Public domain W3C validator