MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddpnf2 Structured version   Visualization version   GIF version

Theorem xaddpnf2 13163
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 11204 . . 3 +∞ ∈ ℝ*
2 xaddval 13159 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
31, 2mpan 690 . 2 (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
4 eqid 2729 . . . 4 +∞ = +∞
54iftruei 4491 . . 3 if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞)
6 ifnefalse 4496 . . 3 (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞)
75, 6eqtrid 2776 . 2 (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞)
83, 7sylan9eq 2784 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4484  (class class class)co 7369  0cc0 11044   + caddc 11047  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   +𝑒 cxad 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-mulcl 11106  ax-i2m1 11112
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-pnf 11186  df-mnf 11187  df-xr 11188  df-xadd 13049
This theorem is referenced by:  xnn0xaddcl  13171  xaddnemnf  13172  xaddcom  13176  xaddrid  13177  xnn0xadd0  13183  xnegdi  13184  xaddass  13185  xleadd1a  13189  xadddilem  13230  xadddi2  13233  hashinfxadd  14326  xrsdsreclblem  21305  isxmet2d  24191  xaddeq0  32649  xrge0adddir  32932  xrge0iifhom  33900  infrpge  45320  infleinflem1  45339  ovolsplit  45959  sge0pr  46365  sge0split  46380  sge0xaddlem1  46404  sge0xadd  46406
  Copyright terms: Public domain W3C validator