MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddpnf2 Structured version   Visualization version   GIF version

Theorem xaddpnf2 13248
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 11294 . . 3 +∞ ∈ ℝ*
2 xaddval 13244 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
31, 2mpan 690 . 2 (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
4 eqid 2736 . . . 4 +∞ = +∞
54iftruei 4512 . . 3 if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞)
6 ifnefalse 4517 . . 3 (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞)
75, 6eqtrid 2783 . 2 (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞)
83, 7sylan9eq 2791 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  ifcif 4505  (class class class)co 7410  0cc0 11134   + caddc 11137  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273   +𝑒 cxad 13131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-i2m1 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-pnf 11276  df-mnf 11277  df-xr 11278  df-xadd 13134
This theorem is referenced by:  xnn0xaddcl  13256  xaddnemnf  13257  xaddcom  13261  xaddrid  13262  xnn0xadd0  13268  xnegdi  13269  xaddass  13270  xleadd1a  13274  xadddilem  13315  xadddi2  13318  hashinfxadd  14408  xrsdsreclblem  21385  isxmet2d  24271  xaddeq0  32735  xrge0adddir  33018  xrge0iifhom  33973  infrpge  45345  infleinflem1  45364  ovolsplit  45984  sge0pr  46390  sge0split  46405  sge0xaddlem1  46429  sge0xadd  46431
  Copyright terms: Public domain W3C validator