![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddpnf2 | Structured version Visualization version GIF version |
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddpnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11300 | . . 3 ⊢ +∞ ∈ ℝ* | |
2 | xaddval 13237 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) | |
3 | 1, 2 | mpan 688 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) |
4 | eqid 2725 | . . . 4 ⊢ +∞ = +∞ | |
5 | 4 | iftruei 4537 | . . 3 ⊢ if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞) |
6 | ifnefalse 4542 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞) | |
7 | 5, 6 | eqtrid 2777 | . 2 ⊢ (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞) |
8 | 3, 7 | sylan9eq 2785 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ifcif 4530 (class class class)co 7419 0cc0 11140 + caddc 11143 +∞cpnf 11277 -∞cmnf 11278 ℝ*cxr 11279 +𝑒 cxad 13125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-mulcl 11202 ax-i2m1 11208 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-pnf 11282 df-mnf 11283 df-xr 11284 df-xadd 13128 |
This theorem is referenced by: xnn0xaddcl 13249 xaddnemnf 13250 xaddcom 13254 xaddrid 13255 xnn0xadd0 13261 xnegdi 13262 xaddass 13263 xleadd1a 13267 xadddilem 13308 xadddi2 13311 hashinfxadd 14380 xrsdsreclblem 21362 isxmet2d 24277 xaddeq0 32605 xrge0adddir 32837 xrge0iifhom 33666 infrpge 44868 infleinflem1 44887 ovolsplit 45511 sge0pr 45917 sge0split 45932 sge0xaddlem1 45956 sge0xadd 45958 |
Copyright terms: Public domain | W3C validator |