| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddpnf2 | Structured version Visualization version GIF version | ||
| Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddpnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval 13183 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) |
| 4 | eqid 2729 | . . . 4 ⊢ +∞ = +∞ | |
| 5 | 4 | iftruei 4495 | . . 3 ⊢ if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞) |
| 6 | ifnefalse 4500 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞) | |
| 7 | 5, 6 | eqtrid 2776 | . 2 ⊢ (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞) |
| 8 | 3, 7 | sylan9eq 2784 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4488 (class class class)co 7387 0cc0 11068 + caddc 11071 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 +𝑒 cxad 13070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pnf 11210 df-mnf 11211 df-xr 11212 df-xadd 13073 |
| This theorem is referenced by: xnn0xaddcl 13195 xaddnemnf 13196 xaddcom 13200 xaddrid 13201 xnn0xadd0 13207 xnegdi 13208 xaddass 13209 xleadd1a 13213 xadddilem 13254 xadddi2 13257 hashinfxadd 14350 xrsdsreclblem 21329 isxmet2d 24215 xaddeq0 32676 xrge0adddir 32959 xrge0iifhom 33927 infrpge 45347 infleinflem1 45366 ovolsplit 45986 sge0pr 46392 sge0split 46407 sge0xaddlem1 46431 sge0xadd 46433 |
| Copyright terms: Public domain | W3C validator |