MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddpnf2 Structured version   Visualization version   GIF version

Theorem xaddpnf2 12890
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 10960 . . 3 +∞ ∈ ℝ*
2 xaddval 12886 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
31, 2mpan 686 . 2 (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
4 eqid 2738 . . . 4 +∞ = +∞
54iftruei 4463 . . 3 if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞)
6 ifnefalse 4468 . . 3 (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞)
75, 6eqtrid 2790 . 2 (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞)
83, 7sylan9eq 2799 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  ifcif 4456  (class class class)co 7255  0cc0 10802   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   +𝑒 cxad 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pnf 10942  df-mnf 10943  df-xr 10944  df-xadd 12778
This theorem is referenced by:  xnn0xaddcl  12898  xaddnemnf  12899  xaddcom  12903  xaddid1  12904  xnn0xadd0  12910  xnegdi  12911  xaddass  12912  xleadd1a  12916  xadddilem  12957  xadddi2  12960  hashinfxadd  14028  xrsdsreclblem  20556  isxmet2d  23388  xaddeq0  30978  xrge0adddir  31203  xrge0iifhom  31789  infrpge  42780  infleinflem1  42799  ovolsplit  43419  sge0pr  43822  sge0split  43837  sge0xaddlem1  43861  sge0xadd  43863
  Copyright terms: Public domain W3C validator