| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddpnf2 | Structured version Visualization version GIF version | ||
| Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddpnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11281 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval 13231 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) |
| 4 | eqid 2734 | . . . 4 ⊢ +∞ = +∞ | |
| 5 | 4 | iftruei 4505 | . . 3 ⊢ if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞) |
| 6 | ifnefalse 4510 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞) | |
| 7 | 5, 6 | eqtrid 2781 | . 2 ⊢ (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞) |
| 8 | 3, 7 | sylan9eq 2789 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ifcif 4498 (class class class)co 7399 0cc0 11121 + caddc 11124 +∞cpnf 11258 -∞cmnf 11259 ℝ*cxr 11260 +𝑒 cxad 13118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-mulcl 11183 ax-i2m1 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-pnf 11263 df-mnf 11264 df-xr 11265 df-xadd 13121 |
| This theorem is referenced by: xnn0xaddcl 13243 xaddnemnf 13244 xaddcom 13248 xaddrid 13249 xnn0xadd0 13255 xnegdi 13256 xaddass 13257 xleadd1a 13261 xadddilem 13302 xadddi2 13305 hashinfxadd 14391 xrsdsreclblem 21365 isxmet2d 24251 xaddeq0 32663 xrge0adddir 32932 xrge0iifhom 33876 infrpge 45306 infleinflem1 45325 ovolsplit 45947 sge0pr 46353 sge0split 46368 sge0xaddlem1 46392 sge0xadd 46394 |
| Copyright terms: Public domain | W3C validator |