| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddpnf2 | Structured version Visualization version GIF version | ||
| Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddpnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11294 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval 13244 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴)))))) |
| 4 | eqid 2736 | . . . 4 ⊢ +∞ = +∞ | |
| 5 | 4 | iftruei 4512 | . . 3 ⊢ if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞) |
| 6 | ifnefalse 4517 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞) | |
| 7 | 5, 6 | eqtrid 2783 | . 2 ⊢ (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞) |
| 8 | 3, 7 | sylan9eq 2791 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ifcif 4505 (class class class)co 7410 0cc0 11134 + caddc 11137 +∞cpnf 11271 -∞cmnf 11272 ℝ*cxr 11273 +𝑒 cxad 13131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-pnf 11276 df-mnf 11277 df-xr 11278 df-xadd 13134 |
| This theorem is referenced by: xnn0xaddcl 13256 xaddnemnf 13257 xaddcom 13261 xaddrid 13262 xnn0xadd0 13268 xnegdi 13269 xaddass 13270 xleadd1a 13274 xadddilem 13315 xadddi2 13318 hashinfxadd 14408 xrsdsreclblem 21385 isxmet2d 24271 xaddeq0 32735 xrge0adddir 33018 xrge0iifhom 33973 infrpge 45345 infleinflem1 45364 ovolsplit 45984 sge0pr 46390 sge0split 46405 sge0xaddlem1 46429 sge0xadd 46431 |
| Copyright terms: Public domain | W3C validator |