MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddpnf2 Structured version   Visualization version   GIF version

Theorem xaddpnf2 13148
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 11188 . . 3 +∞ ∈ ℝ*
2 xaddval 13144 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ*) → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
31, 2mpan 690 . 2 (𝐴 ∈ ℝ* → (+∞ +𝑒 𝐴) = if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))))
4 eqid 2729 . . . 4 +∞ = +∞
54iftruei 4485 . . 3 if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = if(𝐴 = -∞, 0, +∞)
6 ifnefalse 4490 . . 3 (𝐴 ≠ -∞ → if(𝐴 = -∞, 0, +∞) = +∞)
75, 6eqtrid 2776 . 2 (𝐴 ≠ -∞ → if(+∞ = +∞, if(𝐴 = -∞, 0, +∞), if(+∞ = -∞, if(𝐴 = +∞, 0, -∞), if(𝐴 = +∞, +∞, if(𝐴 = -∞, -∞, (+∞ + 𝐴))))) = +∞)
83, 7sylan9eq 2784 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4478  (class class class)co 7353  0cc0 11028   + caddc 11031  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   +𝑒 cxad 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-mulcl 11090  ax-i2m1 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pnf 11170  df-mnf 11171  df-xr 11172  df-xadd 13034
This theorem is referenced by:  xnn0xaddcl  13156  xaddnemnf  13157  xaddcom  13161  xaddrid  13162  xnn0xadd0  13168  xnegdi  13169  xaddass  13170  xleadd1a  13174  xadddilem  13215  xadddi2  13218  hashinfxadd  14311  xrsdsreclblem  21338  isxmet2d  24232  xaddeq0  32715  xrge0adddir  32991  xrge0iifhom  33923  infrpge  45351  infleinflem1  45369  ovolsplit  45989  sge0pr  46395  sge0split  46410  sge0xaddlem1  46434  sge0xadd  46436
  Copyright terms: Public domain W3C validator