Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmulasslem2 | Structured version Visualization version GIF version |
Description: Lemma for xmulass 12950. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulasslem2 | ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . 3 ⊢ (𝐴 = -∞ → (0 < 𝐴 ↔ 0 < -∞)) | |
2 | 0xr 10953 | . . . . 5 ⊢ 0 ∈ ℝ* | |
3 | nltmnf 12794 | . . . . 5 ⊢ (0 ∈ ℝ* → ¬ 0 < -∞) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ¬ 0 < -∞ |
5 | 4 | pm2.21i 119 | . . 3 ⊢ (0 < -∞ → 𝜑) |
6 | 1, 5 | syl6bi 252 | . 2 ⊢ (𝐴 = -∞ → (0 < 𝐴 → 𝜑)) |
7 | 6 | impcom 407 | 1 ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 0cc0 10802 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: xmulgt0 12946 xmulasslem3 12949 |
Copyright terms: Public domain | W3C validator |