| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmulasslem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for xmulass 13247. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmulasslem2 | ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . . 3 ⊢ (𝐴 = -∞ → (0 < 𝐴 ↔ 0 < -∞)) | |
| 2 | 0xr 11221 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 3 | nltmnf 13089 | . . . . 5 ⊢ (0 ∈ ℝ* → ¬ 0 < -∞) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ¬ 0 < -∞ |
| 5 | 4 | pm2.21i 119 | . . 3 ⊢ (0 < -∞ → 𝜑) |
| 6 | 1, 5 | biimtrdi 253 | . 2 ⊢ (𝐴 = -∞ → (0 < 𝐴 → 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 0cc0 11068 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 |
| This theorem is referenced by: xmulgt0 13243 xmulasslem3 13246 |
| Copyright terms: Public domain | W3C validator |