MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem2 Structured version   Visualization version   GIF version

Theorem xmulasslem2 13185
Description: Lemma for xmulass 13190. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulasslem2 ((0 < 𝐴𝐴 = -∞) → 𝜑)

Proof of Theorem xmulasslem2
StepHypRef Expression
1 breq2 5099 . . 3 (𝐴 = -∞ → (0 < 𝐴 ↔ 0 < -∞))
2 0xr 11168 . . . . 5 0 ∈ ℝ*
3 nltmnf 13032 . . . . 5 (0 ∈ ℝ* → ¬ 0 < -∞)
42, 3ax-mp 5 . . . 4 ¬ 0 < -∞
54pm2.21i 119 . . 3 (0 < -∞ → 𝜑)
61, 5biimtrdi 253 . 2 (𝐴 = -∞ → (0 < 𝐴𝜑))
76impcom 407 1 ((0 < 𝐴𝐴 = -∞) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  0cc0 11015  -∞cmnf 11153  *cxr 11154   < clt 11155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-addrcl 11076  ax-rnegex 11086  ax-cnre 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160
This theorem is referenced by:  xmulgt0  13186  xmulasslem3  13189
  Copyright terms: Public domain W3C validator