| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = 𝐴 → (𝑥 ·e 𝐵) = (𝐴 ·e 𝐵)) | 
| 2 | 1 | oveq1d 7446 | . . 3
⊢ (𝑥 = 𝐴 → ((𝑥 ·e 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐵) ·e 𝐶)) | 
| 3 |  | oveq1 7438 | . . 3
⊢ (𝑥 = 𝐴 → (𝑥 ·e (𝐵 ·e 𝐶)) = (𝐴 ·e (𝐵 ·e 𝐶))) | 
| 4 | 2, 3 | eqeq12d 2753 | . 2
⊢ (𝑥 = 𝐴 → (((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)) ↔ ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶)))) | 
| 5 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = -𝑒𝐴 → (𝑥 ·e 𝐵) = (-𝑒𝐴 ·e 𝐵)) | 
| 6 | 5 | oveq1d 7446 | . . 3
⊢ (𝑥 = -𝑒𝐴 → ((𝑥 ·e 𝐵) ·e 𝐶) = ((-𝑒𝐴 ·e 𝐵) ·e 𝐶)) | 
| 7 |  | oveq1 7438 | . . 3
⊢ (𝑥 = -𝑒𝐴 → (𝑥 ·e (𝐵 ·e 𝐶)) = (-𝑒𝐴 ·e (𝐵 ·e 𝐶))) | 
| 8 | 6, 7 | eqeq12d 2753 | . 2
⊢ (𝑥 = -𝑒𝐴 → (((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)) ↔ ((-𝑒𝐴 ·e 𝐵) ·e 𝐶) = (-𝑒𝐴 ·e (𝐵 ·e 𝐶)))) | 
| 9 |  | xmulcl 13315 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 ·e 𝐵) ∈
ℝ*) | 
| 10 |  | xmulcl 13315 | . . 3
⊢ (((𝐴 ·e 𝐵) ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) ∈
ℝ*) | 
| 11 | 9, 10 | stoic3 1776 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) ∈
ℝ*) | 
| 12 |  | simp1 1137 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → 𝐴 ∈
ℝ*) | 
| 13 |  | xmulcl 13315 | . . . 4
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐵 ·e 𝐶) ∈
ℝ*) | 
| 14 | 13 | 3adant1 1131 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (𝐵 ·e 𝐶) ∈
ℝ*) | 
| 15 |  | xmulcl 13315 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ (𝐵
·e 𝐶)
∈ ℝ*) → (𝐴 ·e (𝐵 ·e 𝐶)) ∈
ℝ*) | 
| 16 | 12, 14, 15 | syl2anc 584 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (𝐴 ·e (𝐵 ·e 𝐶)) ∈
ℝ*) | 
| 17 |  | oveq2 7439 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝑥 ·e 𝑦) = (𝑥 ·e 𝐵)) | 
| 18 | 17 | oveq1d 7446 | . . . 4
⊢ (𝑦 = 𝐵 → ((𝑥 ·e 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐵) ·e 𝐶)) | 
| 19 |  | oveq1 7438 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝑦 ·e 𝐶) = (𝐵 ·e 𝐶)) | 
| 20 | 19 | oveq2d 7447 | . . . 4
⊢ (𝑦 = 𝐵 → (𝑥 ·e (𝑦 ·e 𝐶)) = (𝑥 ·e (𝐵 ·e 𝐶))) | 
| 21 | 18, 20 | eqeq12d 2753 | . . 3
⊢ (𝑦 = 𝐵 → (((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)) ↔ ((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)))) | 
| 22 |  | oveq2 7439 | . . . . 5
⊢ (𝑦 = -𝑒𝐵 → (𝑥 ·e 𝑦) = (𝑥 ·e
-𝑒𝐵)) | 
| 23 | 22 | oveq1d 7446 | . . . 4
⊢ (𝑦 = -𝑒𝐵 → ((𝑥 ·e 𝑦) ·e 𝐶) = ((𝑥 ·e
-𝑒𝐵)
·e 𝐶)) | 
| 24 |  | oveq1 7438 | . . . . 5
⊢ (𝑦 = -𝑒𝐵 → (𝑦 ·e 𝐶) = (-𝑒𝐵 ·e 𝐶)) | 
| 25 | 24 | oveq2d 7447 | . . . 4
⊢ (𝑦 = -𝑒𝐵 → (𝑥 ·e (𝑦 ·e 𝐶)) = (𝑥 ·e
(-𝑒𝐵
·e 𝐶))) | 
| 26 | 23, 25 | eqeq12d 2753 | . . 3
⊢ (𝑦 = -𝑒𝐵 → (((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)) ↔ ((𝑥 ·e
-𝑒𝐵)
·e 𝐶) =
(𝑥 ·e
(-𝑒𝐵
·e 𝐶)))) | 
| 27 |  | simprl 771 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → 𝑥 ∈
ℝ*) | 
| 28 |  | simpl2 1193 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → 𝐵 ∈
ℝ*) | 
| 29 |  | xmulcl 13315 | . . . . 5
⊢ ((𝑥 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ·e 𝐵) ∈
ℝ*) | 
| 30 | 27, 28, 29 | syl2anc 584 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e 𝐵) ∈
ℝ*) | 
| 31 |  | simpl3 1194 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → 𝐶 ∈
ℝ*) | 
| 32 |  | xmulcl 13315 | . . . 4
⊢ (((𝑥 ·e 𝐵) ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → ((𝑥 ·e 𝐵) ·e 𝐶) ∈
ℝ*) | 
| 33 | 30, 31, 32 | syl2anc 584 | . . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → ((𝑥 ·e 𝐵) ·e 𝐶) ∈
ℝ*) | 
| 34 | 14 | adantr 480 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝐵 ·e 𝐶) ∈
ℝ*) | 
| 35 |  | xmulcl 13315 | . . . 4
⊢ ((𝑥 ∈ ℝ*
∧ (𝐵
·e 𝐶)
∈ ℝ*) → (𝑥 ·e (𝐵 ·e 𝐶)) ∈
ℝ*) | 
| 36 | 27, 34, 35 | syl2anc 584 | . . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e (𝐵 ·e 𝐶)) ∈
ℝ*) | 
| 37 |  | oveq2 7439 | . . . . 5
⊢ (𝑧 = 𝐶 → ((𝑥 ·e 𝑦) ·e 𝑧) = ((𝑥 ·e 𝑦) ·e 𝐶)) | 
| 38 |  | oveq2 7439 | . . . . . 6
⊢ (𝑧 = 𝐶 → (𝑦 ·e 𝑧) = (𝑦 ·e 𝐶)) | 
| 39 | 38 | oveq2d 7447 | . . . . 5
⊢ (𝑧 = 𝐶 → (𝑥 ·e (𝑦 ·e 𝑧)) = (𝑥 ·e (𝑦 ·e 𝐶))) | 
| 40 | 37, 39 | eqeq12d 2753 | . . . 4
⊢ (𝑧 = 𝐶 → (((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)) ↔ ((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)))) | 
| 41 |  | oveq2 7439 | . . . . 5
⊢ (𝑧 = -𝑒𝐶 → ((𝑥 ·e 𝑦) ·e 𝑧) = ((𝑥 ·e 𝑦) ·e
-𝑒𝐶)) | 
| 42 |  | oveq2 7439 | . . . . . 6
⊢ (𝑧 = -𝑒𝐶 → (𝑦 ·e 𝑧) = (𝑦 ·e
-𝑒𝐶)) | 
| 43 | 42 | oveq2d 7447 | . . . . 5
⊢ (𝑧 = -𝑒𝐶 → (𝑥 ·e (𝑦 ·e 𝑧)) = (𝑥 ·e (𝑦 ·e
-𝑒𝐶))) | 
| 44 | 41, 43 | eqeq12d 2753 | . . . 4
⊢ (𝑧 = -𝑒𝐶 → (((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)) ↔ ((𝑥 ·e 𝑦) ·e
-𝑒𝐶) =
(𝑥 ·e
(𝑦 ·e
-𝑒𝐶)))) | 
| 45 | 27 | adantr 480 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
𝑥 ∈
ℝ*) | 
| 46 |  | simprl 771 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
𝑦 ∈
ℝ*) | 
| 47 |  | xmulcl 13315 | . . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥 ·e 𝑦) ∈
ℝ*) | 
| 48 | 45, 46, 47 | syl2anc 584 | . . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e
𝑦) ∈
ℝ*) | 
| 49 | 31 | adantr 480 | . . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
𝐶 ∈
ℝ*) | 
| 50 |  | xmulcl 13315 | . . . . 5
⊢ (((𝑥 ·e 𝑦) ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → ((𝑥 ·e 𝑦) ·e 𝐶) ∈
ℝ*) | 
| 51 | 48, 49, 50 | syl2anc 584 | . . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
((𝑥 ·e
𝑦) ·e
𝐶) ∈
ℝ*) | 
| 52 |  | xmulcl 13315 | . . . . . 6
⊢ ((𝑦 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝑦 ·e 𝐶) ∈
ℝ*) | 
| 53 | 46, 49, 52 | syl2anc 584 | . . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑦 ·e
𝐶) ∈
ℝ*) | 
| 54 |  | xmulcl 13315 | . . . . 5
⊢ ((𝑥 ∈ ℝ*
∧ (𝑦
·e 𝐶)
∈ ℝ*) → (𝑥 ·e (𝑦 ·e 𝐶)) ∈
ℝ*) | 
| 55 | 45, 53, 54 | syl2anc 584 | . . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e
(𝑦 ·e
𝐶)) ∈
ℝ*) | 
| 56 |  | xmulasslem3 13328 | . . . . 5
⊢ (((𝑥 ∈ ℝ*
∧ 0 < 𝑥) ∧
(𝑦 ∈
ℝ* ∧ 0 < 𝑦) ∧ (𝑧 ∈ ℝ* ∧ 0 <
𝑧)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) | 
| 57 | 56 | ad4ant234 1176 | . . . 4
⊢
(((((𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝑥 ∈ ℝ*
∧ 0 < 𝑥)) ∧
(𝑦 ∈
ℝ* ∧ 0 < 𝑦)) ∧ (𝑧 ∈ ℝ* ∧ 0 <
𝑧)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) | 
| 58 |  | xmul01 13309 | . . . . . . . 8
⊢ ((𝑥 ·e 𝑦) ∈ ℝ*
→ ((𝑥
·e 𝑦)
·e 0) = 0) | 
| 59 | 48, 58 | syl 17 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
((𝑥 ·e
𝑦) ·e 0)
= 0) | 
| 60 |  | xmul01 13309 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ*
→ (𝑥
·e 0) = 0) | 
| 61 | 45, 60 | syl 17 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e 0)
= 0) | 
| 62 | 59, 61 | eqtr4d 2780 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
((𝑥 ·e
𝑦) ·e 0)
= (𝑥 ·e
0)) | 
| 63 |  | xmul01 13309 | . . . . . . . 8
⊢ (𝑦 ∈ ℝ*
→ (𝑦
·e 0) = 0) | 
| 64 | 63 | ad2antrl 728 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑦 ·e 0)
= 0) | 
| 65 | 64 | oveq2d 7447 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e
(𝑦 ·e 0))
= (𝑥 ·e
0)) | 
| 66 | 62, 65 | eqtr4d 2780 | . . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
((𝑥 ·e
𝑦) ·e 0)
= (𝑥 ·e
(𝑦 ·e
0))) | 
| 67 |  | oveq2 7439 | . . . . . 6
⊢ (𝑧 = 0 → ((𝑥 ·e 𝑦) ·e 𝑧) = ((𝑥 ·e 𝑦) ·e 0)) | 
| 68 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑧 = 0 → (𝑦 ·e 𝑧) = (𝑦 ·e 0)) | 
| 69 | 68 | oveq2d 7447 | . . . . . 6
⊢ (𝑧 = 0 → (𝑥 ·e (𝑦 ·e 𝑧)) = (𝑥 ·e (𝑦 ·e 0))) | 
| 70 | 67, 69 | eqeq12d 2753 | . . . . 5
⊢ (𝑧 = 0 → (((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)) ↔ ((𝑥 ·e 𝑦) ·e 0) = (𝑥 ·e (𝑦 ·e
0)))) | 
| 71 | 66, 70 | syl5ibrcom 247 | . . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑧 = 0 → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧)))) | 
| 72 |  | xmulneg2 13312 | . . . . 5
⊢ (((𝑥 ·e 𝑦) ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → ((𝑥 ·e 𝑦) ·e
-𝑒𝐶) =
-𝑒((𝑥
·e 𝑦)
·e 𝐶)) | 
| 73 | 48, 49, 72 | syl2anc 584 | . . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
((𝑥 ·e
𝑦) ·e
-𝑒𝐶) =
-𝑒((𝑥
·e 𝑦)
·e 𝐶)) | 
| 74 |  | xmulneg2 13312 | . . . . . . 7
⊢ ((𝑦 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝑦 ·e
-𝑒𝐶) =
-𝑒(𝑦
·e 𝐶)) | 
| 75 | 46, 49, 74 | syl2anc 584 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑦 ·e
-𝑒𝐶) =
-𝑒(𝑦
·e 𝐶)) | 
| 76 | 75 | oveq2d 7447 | . . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e
(𝑦 ·e
-𝑒𝐶)) =
(𝑥 ·e
-𝑒(𝑦
·e 𝐶))) | 
| 77 |  | xmulneg2 13312 | . . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ (𝑦
·e 𝐶)
∈ ℝ*) → (𝑥 ·e
-𝑒(𝑦
·e 𝐶)) =
-𝑒(𝑥
·e (𝑦
·e 𝐶))) | 
| 78 | 45, 53, 77 | syl2anc 584 | . . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e
-𝑒(𝑦
·e 𝐶)) =
-𝑒(𝑥
·e (𝑦
·e 𝐶))) | 
| 79 | 76, 78 | eqtrd 2777 | . . . 4
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
(𝑥 ·e
(𝑦 ·e
-𝑒𝐶)) =
-𝑒(𝑥
·e (𝑦
·e 𝐶))) | 
| 80 | 40, 44, 51, 55, 49, 57, 71, 73, 79 | xmulasslem 13327 | . . 3
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) ∧ (𝑦 ∈ ℝ*
∧ 0 < 𝑦)) →
((𝑥 ·e
𝑦) ·e
𝐶) = (𝑥 ·e (𝑦 ·e 𝐶))) | 
| 81 |  | xmul02 13310 | . . . . . . . 8
⊢ (𝐶 ∈ ℝ*
→ (0 ·e 𝐶) = 0) | 
| 82 | 81 | 3ad2ant3 1136 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (0 ·e 𝐶) = 0) | 
| 83 | 82 | adantr 480 | . . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (0
·e 𝐶) =
0) | 
| 84 | 60 | ad2antrl 728 | . . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e 0) =
0) | 
| 85 | 83, 84 | eqtr4d 2780 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (0
·e 𝐶) =
(𝑥 ·e
0)) | 
| 86 | 84 | oveq1d 7446 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → ((𝑥 ·e 0)
·e 𝐶) =
(0 ·e 𝐶)) | 
| 87 | 83 | oveq2d 7447 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e (0
·e 𝐶)) =
(𝑥 ·e
0)) | 
| 88 | 85, 86, 87 | 3eqtr4d 2787 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → ((𝑥 ·e 0)
·e 𝐶) =
(𝑥 ·e (0
·e 𝐶))) | 
| 89 |  | oveq2 7439 | . . . . . 6
⊢ (𝑦 = 0 → (𝑥 ·e 𝑦) = (𝑥 ·e 0)) | 
| 90 | 89 | oveq1d 7446 | . . . . 5
⊢ (𝑦 = 0 → ((𝑥 ·e 𝑦) ·e 𝐶) = ((𝑥 ·e 0) ·e
𝐶)) | 
| 91 |  | oveq1 7438 | . . . . . 6
⊢ (𝑦 = 0 → (𝑦 ·e 𝐶) = (0 ·e 𝐶)) | 
| 92 | 91 | oveq2d 7447 | . . . . 5
⊢ (𝑦 = 0 → (𝑥 ·e (𝑦 ·e 𝐶)) = (𝑥 ·e (0 ·e
𝐶))) | 
| 93 | 90, 92 | eqeq12d 2753 | . . . 4
⊢ (𝑦 = 0 → (((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)) ↔ ((𝑥 ·e 0) ·e
𝐶) = (𝑥 ·e (0 ·e
𝐶)))) | 
| 94 | 88, 93 | syl5ibrcom 247 | . . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑦 = 0 → ((𝑥 ·e 𝑦) ·e 𝐶) = (𝑥 ·e (𝑦 ·e 𝐶)))) | 
| 95 |  | xmulneg2 13312 | . . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ·e
-𝑒𝐵) =
-𝑒(𝑥
·e 𝐵)) | 
| 96 | 27, 28, 95 | syl2anc 584 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e
-𝑒𝐵) =
-𝑒(𝑥
·e 𝐵)) | 
| 97 | 96 | oveq1d 7446 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → ((𝑥 ·e
-𝑒𝐵)
·e 𝐶) =
(-𝑒(𝑥
·e 𝐵)
·e 𝐶)) | 
| 98 |  | xmulneg1 13311 | . . . . 5
⊢ (((𝑥 ·e 𝐵) ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (-𝑒(𝑥 ·e 𝐵) ·e 𝐶) = -𝑒((𝑥 ·e 𝐵) ·e 𝐶)) | 
| 99 | 30, 31, 98 | syl2anc 584 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) →
(-𝑒(𝑥
·e 𝐵)
·e 𝐶) =
-𝑒((𝑥
·e 𝐵)
·e 𝐶)) | 
| 100 | 97, 99 | eqtrd 2777 | . . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → ((𝑥 ·e
-𝑒𝐵)
·e 𝐶) =
-𝑒((𝑥
·e 𝐵)
·e 𝐶)) | 
| 101 |  | xmulneg1 13311 | . . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (-𝑒𝐵 ·e 𝐶) = -𝑒(𝐵 ·e 𝐶)) | 
| 102 | 28, 31, 101 | syl2anc 584 | . . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) →
(-𝑒𝐵
·e 𝐶) =
-𝑒(𝐵
·e 𝐶)) | 
| 103 | 102 | oveq2d 7447 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e
(-𝑒𝐵
·e 𝐶)) =
(𝑥 ·e
-𝑒(𝐵
·e 𝐶))) | 
| 104 |  | xmulneg2 13312 | . . . . 5
⊢ ((𝑥 ∈ ℝ*
∧ (𝐵
·e 𝐶)
∈ ℝ*) → (𝑥 ·e
-𝑒(𝐵
·e 𝐶)) =
-𝑒(𝑥
·e (𝐵
·e 𝐶))) | 
| 105 | 27, 34, 104 | syl2anc 584 | . . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e
-𝑒(𝐵
·e 𝐶)) =
-𝑒(𝑥
·e (𝐵
·e 𝐶))) | 
| 106 | 103, 105 | eqtrd 2777 | . . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → (𝑥 ·e
(-𝑒𝐵
·e 𝐶)) =
-𝑒(𝑥
·e (𝐵
·e 𝐶))) | 
| 107 | 21, 26, 33, 36, 28, 80, 94, 100, 106 | xmulasslem 13327 | . 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → ((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶))) | 
| 108 |  | xmul02 13310 | . . . . . 6
⊢ (𝐵 ∈ ℝ*
→ (0 ·e 𝐵) = 0) | 
| 109 | 108 | 3ad2ant2 1135 | . . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (0 ·e 𝐵) = 0) | 
| 110 | 109 | oveq1d 7446 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((0 ·e 𝐵) ·e 𝐶) = (0 ·e 𝐶)) | 
| 111 |  | xmul02 13310 | . . . . 5
⊢ ((𝐵 ·e 𝐶) ∈ ℝ*
→ (0 ·e (𝐵 ·e 𝐶)) = 0) | 
| 112 | 14, 111 | syl 17 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (0 ·e (𝐵 ·e 𝐶)) = 0) | 
| 113 | 82, 110, 112 | 3eqtr4d 2787 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((0 ·e 𝐵) ·e 𝐶) = (0 ·e (𝐵 ·e 𝐶))) | 
| 114 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = 0 → (𝑥 ·e 𝐵) = (0 ·e 𝐵)) | 
| 115 | 114 | oveq1d 7446 | . . . 4
⊢ (𝑥 = 0 → ((𝑥 ·e 𝐵) ·e 𝐶) = ((0 ·e 𝐵) ·e 𝐶)) | 
| 116 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = 0 → (𝑥 ·e (𝐵 ·e 𝐶)) = (0 ·e (𝐵 ·e 𝐶))) | 
| 117 | 115, 116 | eqeq12d 2753 | . . 3
⊢ (𝑥 = 0 → (((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)) ↔ ((0 ·e 𝐵) ·e 𝐶) = (0 ·e
(𝐵 ·e
𝐶)))) | 
| 118 | 113, 117 | syl5ibrcom 247 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (𝑥 = 0 → ((𝑥 ·e 𝐵) ·e 𝐶) = (𝑥 ·e (𝐵 ·e 𝐶)))) | 
| 119 |  | xmulneg1 13311 | . . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) | 
| 120 | 119 | 3adant3 1133 | . . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) | 
| 121 | 120 | oveq1d 7446 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((-𝑒𝐴 ·e 𝐵) ·e 𝐶) = (-𝑒(𝐴 ·e 𝐵) ·e 𝐶)) | 
| 122 |  | xmulneg1 13311 | . . . 4
⊢ (((𝐴 ·e 𝐵) ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (-𝑒(𝐴 ·e 𝐵) ·e 𝐶) = -𝑒((𝐴 ·e 𝐵) ·e 𝐶)) | 
| 123 | 9, 122 | stoic3 1776 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (-𝑒(𝐴 ·e 𝐵) ·e 𝐶) = -𝑒((𝐴 ·e 𝐵) ·e 𝐶)) | 
| 124 | 121, 123 | eqtrd 2777 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((-𝑒𝐴 ·e 𝐵) ·e 𝐶) = -𝑒((𝐴 ·e 𝐵) ·e 𝐶)) | 
| 125 |  | xmulneg1 13311 | . . 3
⊢ ((𝐴 ∈ ℝ*
∧ (𝐵
·e 𝐶)
∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 ·e 𝐶)) = -𝑒(𝐴 ·e (𝐵 ·e 𝐶))) | 
| 126 | 12, 14, 125 | syl2anc 584 | . 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (-𝑒𝐴 ·e (𝐵 ·e 𝐶)) = -𝑒(𝐴 ·e (𝐵 ·e 𝐶))) | 
| 127 | 4, 8, 11, 16, 12, 107, 118, 124, 126 | xmulasslem 13327 | 1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) |