MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmul01 Structured version   Visualization version   GIF version

Theorem xmul01 13173
Description: Extended real version of mul01 11303. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmul01 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)

Proof of Theorem xmul01
StepHypRef Expression
1 0xr 11170 . . 3 0 ∈ ℝ*
2 xmulval 13131 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))))
31, 2mpan2 691 . 2 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))))
4 eqid 2733 . . . 4 0 = 0
54olci 866 . . 3 (𝐴 = 0 ∨ 0 = 0)
65iftruei 4483 . 2 if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))) = 0
73, 6eqtrdi 2784 1 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  ifcif 4476   class class class wbr 5095  (class class class)co 7355  0cc0 11017   · cmul 11022  +∞cpnf 11154  -∞cmnf 11155  *cxr 11156   < clt 11157   ·e cxmu 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-i2m1 11085  ax-rnegex 11088  ax-cnre 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-pnf 11159  df-mnf 11160  df-xr 11161  df-xmul 13019
This theorem is referenced by:  xmul02  13174  xmulge0  13190  xmulass  13193  xlemul1a  13194  xadddilem  13200  xadddi2  13203  psmetge0  24247  xmetge0  24279  nmoix  24664  hashxpe  32815  xrge0mulc1cn  34026  esumcst  34148
  Copyright terms: Public domain W3C validator