![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmul01 | Structured version Visualization version GIF version |
Description: Extended real version of mul01 11469. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmul01 | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11337 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xmulval 13287 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) |
4 | eqid 2740 | . . . 4 ⊢ 0 = 0 | |
5 | 4 | olci 865 | . . 3 ⊢ (𝐴 = 0 ∨ 0 = 0) |
6 | 5 | iftruei 4555 | . 2 ⊢ if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))) = 0 |
7 | 3, 6 | eqtrdi 2796 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 (class class class)co 7448 0cc0 11184 · cmul 11189 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 ·e cxmu 13174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-i2m1 11252 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pnf 11326 df-mnf 11327 df-xr 11328 df-xmul 13177 |
This theorem is referenced by: xmul02 13330 xmulge0 13346 xmulass 13349 xlemul1a 13350 xadddilem 13356 xadddi2 13359 psmetge0 24343 xmetge0 24375 nmoix 24771 hashxpe 32814 xrge0mulc1cn 33887 esumcst 34027 |
Copyright terms: Public domain | W3C validator |