![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmul01 | Structured version Visualization version GIF version |
Description: Extended real version of mul01 11438. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmul01 | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11306 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xmulval 13264 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) |
4 | eqid 2735 | . . . 4 ⊢ 0 = 0 | |
5 | 4 | olci 866 | . . 3 ⊢ (𝐴 = 0 ∨ 0 = 0) |
6 | 5 | iftruei 4538 | . 2 ⊢ if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))) = 0 |
7 | 3, 6 | eqtrdi 2791 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ifcif 4531 class class class wbr 5148 (class class class)co 7431 0cc0 11153 · cmul 11158 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 < clt 11293 ·e cxmu 13151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-i2m1 11221 ax-rnegex 11224 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pnf 11295 df-mnf 11296 df-xr 11297 df-xmul 13154 |
This theorem is referenced by: xmul02 13307 xmulge0 13323 xmulass 13326 xlemul1a 13327 xadddilem 13333 xadddi2 13336 psmetge0 24338 xmetge0 24370 nmoix 24766 hashxpe 32817 xrge0mulc1cn 33902 esumcst 34044 |
Copyright terms: Public domain | W3C validator |