Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmul01 | Structured version Visualization version GIF version |
Description: Extended real version of mul01 11084. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmul01 | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10953 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xmulval 12888 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) |
4 | eqid 2738 | . . . 4 ⊢ 0 = 0 | |
5 | 4 | olci 862 | . . 3 ⊢ (𝐴 = 0 ∨ 0 = 0) |
6 | 5 | iftruei 4463 | . 2 ⊢ if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))) = 0 |
7 | 3, 6 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 (class class class)co 7255 0cc0 10802 · cmul 10807 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ·e cxmu 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-i2m1 10870 ax-rnegex 10873 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pnf 10942 df-mnf 10943 df-xr 10944 df-xmul 12779 |
This theorem is referenced by: xmul02 12931 xmulge0 12947 xmulass 12950 xlemul1a 12951 xadddilem 12957 xadddi2 12960 psmetge0 23373 xmetge0 23405 nmoix 23799 hashxpe 31029 xrge0mulc1cn 31793 esumcst 31931 |
Copyright terms: Public domain | W3C validator |