| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpdom1 | Structured version Visualization version GIF version | ||
| Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| xpdom1.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| xpdom1 | ⊢ (𝐴 ≼ 𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpdom1.2 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | xpdom1g 9110 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ≼ 𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 × cxp 5682 ≼ cdom 8984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-1st 8015 df-2nd 8016 df-en 8987 df-dom 8988 |
| This theorem is referenced by: uniimadom 10585 unirnfdomd 10608 alephreg 10623 inar1 10816 2ndcctbss 23464 tx2ndc 23660 mbfimaopnlem 25691 |
| Copyright terms: Public domain | W3C validator |