MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1 Structured version   Visualization version   GIF version

Theorem xpdom1 9101
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
Hypothesis
Ref Expression
xpdom1.2 𝐶 ∈ V
Assertion
Ref Expression
xpdom1 (𝐴𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))

Proof of Theorem xpdom1
StepHypRef Expression
1 xpdom1.2 . 2 𝐶 ∈ V
2 xpdom1g 9099 . 2 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
31, 2mpan 688 1 (𝐴𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Vcvv 3462   class class class wbr 5145   × cxp 5672  cdom 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-1st 7995  df-2nd 7996  df-en 8967  df-dom 8968
This theorem is referenced by:  uniimadom  10578  unirnfdomd  10601  alephreg  10616  inar1  10809  2ndcctbss  23447  tx2ndc  23643  mbfimaopnlem  25672
  Copyright terms: Public domain W3C validator