| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3c | Unicode version | ||
| Description: Lemma for 2lgslem3c1 15340. (Contributed by AV, 16-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| 2lgslem2.n | 
 | 
| Ref | Expression | 
|---|---|
| 2lgslem3c | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2lgslem2.n | 
. . 3
 | |
| 2 | oveq1 5929 | 
. . . . 5
 | |
| 3 | 2 | oveq1d 5937 | 
. . . 4
 | 
| 4 | fvoveq1 5945 | 
. . . 4
 | |
| 5 | 3, 4 | oveq12d 5940 | 
. . 3
 | 
| 6 | 1, 5 | eqtrid 2241 | 
. 2
 | 
| 7 | 8nn0 9272 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | a1i 9 | 
. . . . . . . . . 10
 | 
| 9 | id 19 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | nn0mulcld 9307 | 
. . . . . . . . 9
 | 
| 11 | 10 | nn0cnd 9304 | 
. . . . . . . 8
 | 
| 12 | 5cn 9070 | 
. . . . . . . . 9
 | |
| 13 | 12 | a1i 9 | 
. . . . . . . 8
 | 
| 14 | 1cnd 8042 | 
. . . . . . . 8
 | |
| 15 | 11, 13, 14 | addsubassd 8357 | 
. . . . . . 7
 | 
| 16 | 4t2e8 9149 | 
. . . . . . . . . . . 12
 | |
| 17 | 16 | eqcomi 2200 | 
. . . . . . . . . . 11
 | 
| 18 | 17 | a1i 9 | 
. . . . . . . . . 10
 | 
| 19 | 18 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 20 | 4cn 9068 | 
. . . . . . . . . . 11
 | |
| 21 | 20 | a1i 9 | 
. . . . . . . . . 10
 | 
| 22 | 2cn 9061 | 
. . . . . . . . . . 11
 | |
| 23 | 22 | a1i 9 | 
. . . . . . . . . 10
 | 
| 24 | nn0cn 9259 | 
. . . . . . . . . 10
 | |
| 25 | 21, 23, 24 | mul32d 8179 | 
. . . . . . . . 9
 | 
| 26 | 19, 25 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 27 | 5m1e4 9112 | 
. . . . . . . . 9
 | |
| 28 | 27 | a1i 9 | 
. . . . . . . 8
 | 
| 29 | 26, 28 | oveq12d 5940 | 
. . . . . . 7
 | 
| 30 | 15, 29 | eqtrd 2229 | 
. . . . . 6
 | 
| 31 | 30 | oveq1d 5937 | 
. . . . 5
 | 
| 32 | 4nn0 9268 | 
. . . . . . . . . 10
 | |
| 33 | 32 | a1i 9 | 
. . . . . . . . 9
 | 
| 34 | 33, 9 | nn0mulcld 9307 | 
. . . . . . . 8
 | 
| 35 | 34 | nn0cnd 9304 | 
. . . . . . 7
 | 
| 36 | 35, 23 | mulcld 8047 | 
. . . . . 6
 | 
| 37 | 2rp 9733 | 
. . . . . . . 8
 | |
| 38 | 37 | a1i 9 | 
. . . . . . 7
 | 
| 39 | 38 | rpap0d 9777 | 
. . . . . 6
 | 
| 40 | 36, 21, 23, 39 | divdirapd 8856 | 
. . . . 5
 | 
| 41 | 35, 23, 39 | divcanap4d 8823 | 
. . . . . 6
 | 
| 42 | 4d2e2 9151 | 
. . . . . . 7
 | |
| 43 | 42 | a1i 9 | 
. . . . . 6
 | 
| 44 | 41, 43 | oveq12d 5940 | 
. . . . 5
 | 
| 45 | 31, 40, 44 | 3eqtrd 2233 | 
. . . 4
 | 
| 46 | 4ap0 9089 | 
. . . . . . . . 9
 | |
| 47 | 46 | a1i 9 | 
. . . . . . . 8
 | 
| 48 | 11, 13, 21, 47 | divdirapd 8856 | 
. . . . . . 7
 | 
| 49 | 8cn 9076 | 
. . . . . . . . . . 11
 | |
| 50 | 49 | a1i 9 | 
. . . . . . . . . 10
 | 
| 51 | 50, 24, 21, 47 | div23apd 8855 | 
. . . . . . . . 9
 | 
| 52 | 17 | oveq1i 5932 | 
. . . . . . . . . . . 12
 | 
| 53 | 22, 20, 46 | divcanap3i 8785 | 
. . . . . . . . . . . 12
 | 
| 54 | 52, 53 | eqtri 2217 | 
. . . . . . . . . . 11
 | 
| 55 | 54 | a1i 9 | 
. . . . . . . . . 10
 | 
| 56 | 55 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 57 | 51, 56 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 58 | 57 | oveq1d 5937 | 
. . . . . . 7
 | 
| 59 | 48, 58 | eqtrd 2229 | 
. . . . . 6
 | 
| 60 | 59 | fveq2d 5562 | 
. . . . 5
 | 
| 61 | 1lt4 9165 | 
. . . . . 6
 | |
| 62 | 2nn0 9266 | 
. . . . . . . . . . . 12
 | |
| 63 | 62 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 64 | 63, 9 | nn0mulcld 9307 | 
. . . . . . . . . 10
 | 
| 65 | 64 | nn0zd 9446 | 
. . . . . . . . 9
 | 
| 66 | 65 | peano2zd 9451 | 
. . . . . . . 8
 | 
| 67 | 1nn0 9265 | 
. . . . . . . . 9
 | |
| 68 | 67 | a1i 9 | 
. . . . . . . 8
 | 
| 69 | 4nn 9154 | 
. . . . . . . . 9
 | |
| 70 | 69 | a1i 9 | 
. . . . . . . 8
 | 
| 71 | adddivflid 10382 | 
. . . . . . . 8
 | |
| 72 | 66, 68, 70, 71 | syl3anc 1249 | 
. . . . . . 7
 | 
| 73 | 23, 24 | mulcld 8047 | 
. . . . . . . . . 10
 | 
| 74 | 21, 47 | recclapd 8808 | 
. . . . . . . . . 10
 | 
| 75 | 73, 14, 74 | addassd 8049 | 
. . . . . . . . 9
 | 
| 76 | df-5 9052 | 
. . . . . . . . . . . . . 14
 | |
| 77 | 76 | oveq1i 5932 | 
. . . . . . . . . . . . 13
 | 
| 78 | ax-1cn 7972 | 
. . . . . . . . . . . . . 14
 | |
| 79 | 20, 78, 20, 46 | divdirapi 8796 | 
. . . . . . . . . . . . 13
 | 
| 80 | 20, 46 | dividapi 8772 | 
. . . . . . . . . . . . . 14
 | 
| 81 | 80 | oveq1i 5932 | 
. . . . . . . . . . . . 13
 | 
| 82 | 77, 79, 81 | 3eqtri 2221 | 
. . . . . . . . . . . 12
 | 
| 83 | 82 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 84 | 83 | eqcomd 2202 | 
. . . . . . . . . 10
 | 
| 85 | 84 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 86 | 75, 85 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 87 | 86 | fveqeq2d 5566 | 
. . . . . . 7
 | 
| 88 | 72, 87 | bitrd 188 | 
. . . . . 6
 | 
| 89 | 61, 88 | mpbii 148 | 
. . . . 5
 | 
| 90 | 60, 89 | eqtrd 2229 | 
. . . 4
 | 
| 91 | 45, 90 | oveq12d 5940 | 
. . 3
 | 
| 92 | 64 | nn0cnd 9304 | 
. . . 4
 | 
| 93 | 35, 23, 92, 14 | addsub4d 8384 | 
. . 3
 | 
| 94 | 2t2e4 9145 | 
. . . . . . . . . 10
 | |
| 95 | 94 | eqcomi 2200 | 
. . . . . . . . 9
 | 
| 96 | 95 | a1i 9 | 
. . . . . . . 8
 | 
| 97 | 96 | oveq1d 5937 | 
. . . . . . 7
 | 
| 98 | 23, 23, 24 | mulassd 8050 | 
. . . . . . 7
 | 
| 99 | 97, 98 | eqtrd 2229 | 
. . . . . 6
 | 
| 100 | 99 | oveq1d 5937 | 
. . . . 5
 | 
| 101 | 2txmxeqx 9122 | 
. . . . . 6
 | |
| 102 | 92, 101 | syl 14 | 
. . . . 5
 | 
| 103 | 100, 102 | eqtrd 2229 | 
. . . 4
 | 
| 104 | 2m1e1 9108 | 
. . . . 5
 | |
| 105 | 104 | a1i 9 | 
. . . 4
 | 
| 106 | 103, 105 | oveq12d 5940 | 
. . 3
 | 
| 107 | 91, 93, 106 | 3eqtrd 2233 | 
. 2
 | 
| 108 | 6, 107 | sylan9eqr 2251 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 | 
| This theorem is referenced by: 2lgslem3c1 15340 | 
| Copyright terms: Public domain | W3C validator |