ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3c Unicode version

Theorem 2lgslem3c 15336
Description: Lemma for 2lgslem3c1 15340. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3c  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  5 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3c
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5929 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  5 )  - 
1 ) )
32oveq1d 5937 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  5 )  -  1 )  / 
2 ) )
4 fvoveq1 5945 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  5 )  /  4 ) ) )
53, 4oveq12d 5940 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  5 )  /  4 ) ) ) )
61, 5eqtrid 2241 . 2  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  5 )  /  4 ) ) ) )
7 8nn0 9272 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9307 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9304 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 5cn 9070 . . . . . . . . 9  |-  5  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  5  e.  CC )
14 1cnd 8042 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8357 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  -  1 )  =  ( ( 8  x.  K )  +  ( 5  -  1 ) ) )
16 4t2e8 9149 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2200 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5937 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9068 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9061 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9259 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8179 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 5m1e4 9112 . . . . . . . . 9  |-  ( 5  -  1 )  =  4
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 5  -  1 )  =  4 )
2926, 28oveq12d 5940 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 5  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  4 ) )
3015, 29eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  4 ) )
3130oveq1d 5937 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  4 )  /  2
) )
32 4nn0 9268 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9307 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9304 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8047 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9733 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9777 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 21, 23, 39divdirapd 8856 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  4 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 4  /  2 ) ) )
4135, 23, 39divcanap4d 8823 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
42 4d2e2 9151 . . . . . . 7  |-  ( 4  /  2 )  =  2
4342a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  /  2 )  =  2 )
4441, 43oveq12d 5940 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 4  / 
2 ) )  =  ( ( 4  x.  K )  +  2 ) )
4531, 40, 443eqtrd 2233 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  2 ) )
46 4ap0 9089 . . . . . . . . 9  |-  4 #  0
4746a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
4811, 13, 21, 47divdirapd 8856 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 5  /  4 ) ) )
49 8cn 9076 . . . . . . . . . . 11  |-  8  e.  CC
5049a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5150, 24, 21, 47div23apd 8855 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5217oveq1i 5932 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5322, 20, 46divcanap3i 8785 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5452, 53eqtri 2217 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5554a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5655oveq1d 5937 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5751, 56eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
5857oveq1d 5937 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 5  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
5948, 58eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  /  4 )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
6059fveq2d 5562 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  5 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 5  /  4 ) ) ) )
61 1lt4 9165 . . . . . 6  |-  1  <  4
62 2nn0 9266 . . . . . . . . . . . 12  |-  2  e.  NN0
6362a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6463, 9nn0mulcld 9307 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6564nn0zd 9446 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
6665peano2zd 9451 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
67 1nn0 9265 . . . . . . . . 9  |-  1  e.  NN0
6867a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e. 
NN0 )
69 4nn 9154 . . . . . . . . 9  |-  4  e.  NN
7069a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
71 adddivflid 10382 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  1  e.  NN0  /\  4  e.  NN )  ->  (
1  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
7266, 68, 70, 71syl3anc 1249 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 1  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
7323, 24mulcld 8047 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7421, 47recclapd 8808 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  /  4 )  e.  CC )
7573, 14, 74addassd 8049 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 1  /  4 ) ) ) )
76 df-5 9052 . . . . . . . . . . . . . 14  |-  5  =  ( 4  +  1 )
7776oveq1i 5932 . . . . . . . . . . . . 13  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
78 ax-1cn 7972 . . . . . . . . . . . . . 14  |-  1  e.  CC
7920, 78, 20, 46divdirapi 8796 . . . . . . . . . . . . 13  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
8020, 46dividapi 8772 . . . . . . . . . . . . . 14  |-  ( 4  /  4 )  =  1
8180oveq1i 5932 . . . . . . . . . . . . 13  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
8277, 79, 813eqtri 2221 . . . . . . . . . . . 12  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
8382a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) ) )
8483eqcomd 2202 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  +  ( 1  / 
4 ) )  =  ( 5  /  4
) )
8584oveq2d 5938 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 1  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
8675, 85eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
8786fveqeq2d 5566 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8872, 87bitrd 188 . . . . . 6  |-  ( K  e.  NN0  ->  ( 1  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8961, 88mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 5  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
9060, 89eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  5 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
9145, 90oveq12d 5940 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  5 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  2 )  -  (
( 2  x.  K
)  +  1 ) ) )
9264nn0cnd 9304 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
9335, 23, 92, 14addsub4d 8384 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  2 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 2  -  1 ) ) )
94 2t2e4 9145 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
9594eqcomi 2200 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
9695a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
9796oveq1d 5937 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
9823, 23, 24mulassd 8050 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
9997, 98eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
10099oveq1d 5937 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
101 2txmxeqx 9122 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
10292, 101syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
103100, 102eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
104 2m1e1 9108 . . . . 5  |-  ( 2  -  1 )  =  1
105104a1i 9 . . . 4  |-  ( K  e.  NN0  ->  ( 2  -  1 )  =  1 )
106103, 105oveq12d 5940 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 2  -  1 ) )  =  ( ( 2  x.  K )  +  1 ) )
10791, 93, 1063eqtrd 2233 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  5 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
1086, 107sylan9eqr 2251 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  5 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    - cmin 8197   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041   4c4 9043   5c5 9044   8c8 9047   NN0cn0 9249   ZZcz 9326   RR+crp 9728   |_cfl 10358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360
This theorem is referenced by:  2lgslem3c1  15340
  Copyright terms: Public domain W3C validator