| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3c | Unicode version | ||
| Description: Lemma for 2lgslem3c1 15786. (Contributed by AV, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n |
|
| Ref | Expression |
|---|---|
| 2lgslem3c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem2.n |
. . 3
| |
| 2 | oveq1 6014 |
. . . . 5
| |
| 3 | 2 | oveq1d 6022 |
. . . 4
|
| 4 | fvoveq1 6030 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 6025 |
. . 3
|
| 6 | 1, 5 | eqtrid 2274 |
. 2
|
| 7 | 8nn0 9400 |
. . . . . . . . . . 11
| |
| 8 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 9 | id 19 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | nn0mulcld 9435 |
. . . . . . . . 9
|
| 11 | 10 | nn0cnd 9432 |
. . . . . . . 8
|
| 12 | 5cn 9198 |
. . . . . . . . 9
| |
| 13 | 12 | a1i 9 |
. . . . . . . 8
|
| 14 | 1cnd 8170 |
. . . . . . . 8
| |
| 15 | 11, 13, 14 | addsubassd 8485 |
. . . . . . 7
|
| 16 | 4t2e8 9277 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqcomi 2233 |
. . . . . . . . . . 11
|
| 18 | 17 | a1i 9 |
. . . . . . . . . 10
|
| 19 | 18 | oveq1d 6022 |
. . . . . . . . 9
|
| 20 | 4cn 9196 |
. . . . . . . . . . 11
| |
| 21 | 20 | a1i 9 |
. . . . . . . . . 10
|
| 22 | 2cn 9189 |
. . . . . . . . . . 11
| |
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | nn0cn 9387 |
. . . . . . . . . 10
| |
| 25 | 21, 23, 24 | mul32d 8307 |
. . . . . . . . 9
|
| 26 | 19, 25 | eqtrd 2262 |
. . . . . . . 8
|
| 27 | 5m1e4 9240 |
. . . . . . . . 9
| |
| 28 | 27 | a1i 9 |
. . . . . . . 8
|
| 29 | 26, 28 | oveq12d 6025 |
. . . . . . 7
|
| 30 | 15, 29 | eqtrd 2262 |
. . . . . 6
|
| 31 | 30 | oveq1d 6022 |
. . . . 5
|
| 32 | 4nn0 9396 |
. . . . . . . . . 10
| |
| 33 | 32 | a1i 9 |
. . . . . . . . 9
|
| 34 | 33, 9 | nn0mulcld 9435 |
. . . . . . . 8
|
| 35 | 34 | nn0cnd 9432 |
. . . . . . 7
|
| 36 | 35, 23 | mulcld 8175 |
. . . . . 6
|
| 37 | 2rp 9862 |
. . . . . . . 8
| |
| 38 | 37 | a1i 9 |
. . . . . . 7
|
| 39 | 38 | rpap0d 9906 |
. . . . . 6
|
| 40 | 36, 21, 23, 39 | divdirapd 8984 |
. . . . 5
|
| 41 | 35, 23, 39 | divcanap4d 8951 |
. . . . . 6
|
| 42 | 4d2e2 9279 |
. . . . . . 7
| |
| 43 | 42 | a1i 9 |
. . . . . 6
|
| 44 | 41, 43 | oveq12d 6025 |
. . . . 5
|
| 45 | 31, 40, 44 | 3eqtrd 2266 |
. . . 4
|
| 46 | 4ap0 9217 |
. . . . . . . . 9
| |
| 47 | 46 | a1i 9 |
. . . . . . . 8
|
| 48 | 11, 13, 21, 47 | divdirapd 8984 |
. . . . . . 7
|
| 49 | 8cn 9204 |
. . . . . . . . . . 11
| |
| 50 | 49 | a1i 9 |
. . . . . . . . . 10
|
| 51 | 50, 24, 21, 47 | div23apd 8983 |
. . . . . . . . 9
|
| 52 | 17 | oveq1i 6017 |
. . . . . . . . . . . 12
|
| 53 | 22, 20, 46 | divcanap3i 8913 |
. . . . . . . . . . . 12
|
| 54 | 52, 53 | eqtri 2250 |
. . . . . . . . . . 11
|
| 55 | 54 | a1i 9 |
. . . . . . . . . 10
|
| 56 | 55 | oveq1d 6022 |
. . . . . . . . 9
|
| 57 | 51, 56 | eqtrd 2262 |
. . . . . . . 8
|
| 58 | 57 | oveq1d 6022 |
. . . . . . 7
|
| 59 | 48, 58 | eqtrd 2262 |
. . . . . 6
|
| 60 | 59 | fveq2d 5633 |
. . . . 5
|
| 61 | 1lt4 9293 |
. . . . . 6
| |
| 62 | 2nn0 9394 |
. . . . . . . . . . . 12
| |
| 63 | 62 | a1i 9 |
. . . . . . . . . . 11
|
| 64 | 63, 9 | nn0mulcld 9435 |
. . . . . . . . . 10
|
| 65 | 64 | nn0zd 9575 |
. . . . . . . . 9
|
| 66 | 65 | peano2zd 9580 |
. . . . . . . 8
|
| 67 | 1nn0 9393 |
. . . . . . . . 9
| |
| 68 | 67 | a1i 9 |
. . . . . . . 8
|
| 69 | 4nn 9282 |
. . . . . . . . 9
| |
| 70 | 69 | a1i 9 |
. . . . . . . 8
|
| 71 | adddivflid 10520 |
. . . . . . . 8
| |
| 72 | 66, 68, 70, 71 | syl3anc 1271 |
. . . . . . 7
|
| 73 | 23, 24 | mulcld 8175 |
. . . . . . . . . 10
|
| 74 | 21, 47 | recclapd 8936 |
. . . . . . . . . 10
|
| 75 | 73, 14, 74 | addassd 8177 |
. . . . . . . . 9
|
| 76 | df-5 9180 |
. . . . . . . . . . . . . 14
| |
| 77 | 76 | oveq1i 6017 |
. . . . . . . . . . . . 13
|
| 78 | ax-1cn 8100 |
. . . . . . . . . . . . . 14
| |
| 79 | 20, 78, 20, 46 | divdirapi 8924 |
. . . . . . . . . . . . 13
|
| 80 | 20, 46 | dividapi 8900 |
. . . . . . . . . . . . . 14
|
| 81 | 80 | oveq1i 6017 |
. . . . . . . . . . . . 13
|
| 82 | 77, 79, 81 | 3eqtri 2254 |
. . . . . . . . . . . 12
|
| 83 | 82 | a1i 9 |
. . . . . . . . . . 11
|
| 84 | 83 | eqcomd 2235 |
. . . . . . . . . 10
|
| 85 | 84 | oveq2d 6023 |
. . . . . . . . 9
|
| 86 | 75, 85 | eqtrd 2262 |
. . . . . . . 8
|
| 87 | 86 | fveqeq2d 5637 |
. . . . . . 7
|
| 88 | 72, 87 | bitrd 188 |
. . . . . 6
|
| 89 | 61, 88 | mpbii 148 |
. . . . 5
|
| 90 | 60, 89 | eqtrd 2262 |
. . . 4
|
| 91 | 45, 90 | oveq12d 6025 |
. . 3
|
| 92 | 64 | nn0cnd 9432 |
. . . 4
|
| 93 | 35, 23, 92, 14 | addsub4d 8512 |
. . 3
|
| 94 | 2t2e4 9273 |
. . . . . . . . . 10
| |
| 95 | 94 | eqcomi 2233 |
. . . . . . . . 9
|
| 96 | 95 | a1i 9 |
. . . . . . . 8
|
| 97 | 96 | oveq1d 6022 |
. . . . . . 7
|
| 98 | 23, 23, 24 | mulassd 8178 |
. . . . . . 7
|
| 99 | 97, 98 | eqtrd 2262 |
. . . . . 6
|
| 100 | 99 | oveq1d 6022 |
. . . . 5
|
| 101 | 2txmxeqx 9250 |
. . . . . 6
| |
| 102 | 92, 101 | syl 14 |
. . . . 5
|
| 103 | 100, 102 | eqtrd 2262 |
. . . 4
|
| 104 | 2m1e1 9236 |
. . . . 5
| |
| 105 | 104 | a1i 9 |
. . . 4
|
| 106 | 103, 105 | oveq12d 6025 |
. . 3
|
| 107 | 91, 93, 106 | 3eqtrd 2266 |
. 2
|
| 108 | 6, 107 | sylan9eqr 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-fl 10498 |
| This theorem is referenced by: 2lgslem3c1 15786 |
| Copyright terms: Public domain | W3C validator |