ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3c Unicode version

Theorem 2lgslem3c 15616
Description: Lemma for 2lgslem3c1 15620. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3c  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  5 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3c
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5958 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  5 )  - 
1 ) )
32oveq1d 5966 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  5 )  -  1 )  / 
2 ) )
4 fvoveq1 5974 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  5 )  /  4 ) ) )
53, 4oveq12d 5969 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  5 )  /  4 ) ) ) )
61, 5eqtrid 2251 . 2  |-  ( P  =  ( ( 8  x.  K )  +  5 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  5 )  /  4 ) ) ) )
7 8nn0 9325 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9360 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9357 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 5cn 9123 . . . . . . . . 9  |-  5  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  5  e.  CC )
14 1cnd 8095 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8410 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  -  1 )  =  ( ( 8  x.  K )  +  ( 5  -  1 ) ) )
16 4t2e8 9202 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2210 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5966 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9121 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9114 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9312 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8232 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2239 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 5m1e4 9165 . . . . . . . . 9  |-  ( 5  -  1 )  =  4
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 5  -  1 )  =  4 )
2926, 28oveq12d 5969 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 5  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  4 ) )
3015, 29eqtrd 2239 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  4 ) )
3130oveq1d 5966 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  4 )  /  2
) )
32 4nn0 9321 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9360 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9357 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8100 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9787 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9831 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 21, 23, 39divdirapd 8909 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  4 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 4  /  2 ) ) )
4135, 23, 39divcanap4d 8876 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
42 4d2e2 9204 . . . . . . 7  |-  ( 4  /  2 )  =  2
4342a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  /  2 )  =  2 )
4441, 43oveq12d 5969 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 4  / 
2 ) )  =  ( ( 4  x.  K )  +  2 ) )
4531, 40, 443eqtrd 2243 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  2 ) )
46 4ap0 9142 . . . . . . . . 9  |-  4 #  0
4746a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
4811, 13, 21, 47divdirapd 8909 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 5  /  4 ) ) )
49 8cn 9129 . . . . . . . . . . 11  |-  8  e.  CC
5049a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5150, 24, 21, 47div23apd 8908 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5217oveq1i 5961 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5322, 20, 46divcanap3i 8838 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5452, 53eqtri 2227 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5554a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5655oveq1d 5966 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5751, 56eqtrd 2239 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
5857oveq1d 5966 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 5  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
5948, 58eqtrd 2239 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  5 )  /  4 )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
6059fveq2d 5587 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  5 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 5  /  4 ) ) ) )
61 1lt4 9218 . . . . . 6  |-  1  <  4
62 2nn0 9319 . . . . . . . . . . . 12  |-  2  e.  NN0
6362a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6463, 9nn0mulcld 9360 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6564nn0zd 9500 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
6665peano2zd 9505 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
67 1nn0 9318 . . . . . . . . 9  |-  1  e.  NN0
6867a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e. 
NN0 )
69 4nn 9207 . . . . . . . . 9  |-  4  e.  NN
7069a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
71 adddivflid 10442 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  1  e.  NN0  /\  4  e.  NN )  ->  (
1  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
7266, 68, 70, 71syl3anc 1250 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 1  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 1  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
7323, 24mulcld 8100 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7421, 47recclapd 8861 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  /  4 )  e.  CC )
7573, 14, 74addassd 8102 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 1  /  4 ) ) ) )
76 df-5 9105 . . . . . . . . . . . . . 14  |-  5  =  ( 4  +  1 )
7776oveq1i 5961 . . . . . . . . . . . . 13  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
78 ax-1cn 8025 . . . . . . . . . . . . . 14  |-  1  e.  CC
7920, 78, 20, 46divdirapi 8849 . . . . . . . . . . . . 13  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
8020, 46dividapi 8825 . . . . . . . . . . . . . 14  |-  ( 4  /  4 )  =  1
8180oveq1i 5961 . . . . . . . . . . . . 13  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
8277, 79, 813eqtri 2231 . . . . . . . . . . . 12  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
8382a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) ) )
8483eqcomd 2212 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  +  ( 1  / 
4 ) )  =  ( 5  /  4
) )
8584oveq2d 5967 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 1  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
8675, 85eqtrd 2239 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )
8786fveqeq2d 5591 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 1  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8872, 87bitrd 188 . . . . . 6  |-  ( K  e.  NN0  ->  ( 1  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 5  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8961, 88mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 5  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
9060, 89eqtrd 2239 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  5 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
9145, 90oveq12d 5969 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  5 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  2 )  -  (
( 2  x.  K
)  +  1 ) ) )
9264nn0cnd 9357 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
9335, 23, 92, 14addsub4d 8437 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  2 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 2  -  1 ) ) )
94 2t2e4 9198 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
9594eqcomi 2210 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
9695a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
9796oveq1d 5966 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
9823, 23, 24mulassd 8103 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
9997, 98eqtrd 2239 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
10099oveq1d 5966 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
101 2txmxeqx 9175 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
10292, 101syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
103100, 102eqtrd 2239 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
104 2m1e1 9161 . . . . 5  |-  ( 2  -  1 )  =  1
105104a1i 9 . . . 4  |-  ( K  e.  NN0  ->  ( 2  -  1 )  =  1 )
106103, 105oveq12d 5969 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 2  -  1 ) )  =  ( ( 2  x.  K )  +  1 ) )
10791, 93, 1063eqtrd 2243 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  5 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  5 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
1086, 107sylan9eqr 2261 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  5 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   class class class wbr 4047   ` cfv 5276  (class class class)co 5951   CCcc 7930   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    < clt 8114    - cmin 8250   # cap 8661    / cdiv 8752   NNcn 9043   2c2 9094   4c4 9096   5c5 9097   8c8 9100   NN0cn0 9302   ZZcz 9379   RR+crp 9782   |_cfl 10418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420
This theorem is referenced by:  2lgslem3c1  15620
  Copyright terms: Public domain W3C validator