| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3a | Unicode version | ||
| Description: Lemma for 2lgslem3a1 15618. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n |
|
| Ref | Expression |
|---|---|
| 2lgslem3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem2.n |
. . 3
| |
| 2 | oveq1 5958 |
. . . . 5
| |
| 3 | 2 | oveq1d 5966 |
. . . 4
|
| 4 | fvoveq1 5974 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 5969 |
. . 3
|
| 6 | 1, 5 | eqtrid 2251 |
. 2
|
| 7 | 8nn0 9325 |
. . . . . . . . . 10
| |
| 8 | 7 | a1i 9 |
. . . . . . . . 9
|
| 9 | id 19 |
. . . . . . . . 9
| |
| 10 | 8, 9 | nn0mulcld 9360 |
. . . . . . . 8
|
| 11 | 10 | nn0cnd 9357 |
. . . . . . 7
|
| 12 | pncan1 8456 |
. . . . . . 7
| |
| 13 | 11, 12 | syl 14 |
. . . . . 6
|
| 14 | 13 | oveq1d 5966 |
. . . . 5
|
| 15 | 4cn 9121 |
. . . . . . . . . . 11
| |
| 16 | 2cn 9114 |
. . . . . . . . . . 11
| |
| 17 | 4t2e8 9202 |
. . . . . . . . . . 11
| |
| 18 | 15, 16, 17 | mulcomli 8086 |
. . . . . . . . . 10
|
| 19 | 18 | eqcomi 2210 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | 20 | oveq1d 5966 |
. . . . . . 7
|
| 22 | 16 | a1i 9 |
. . . . . . . 8
|
| 23 | 15 | a1i 9 |
. . . . . . . 8
|
| 24 | nn0cn 9312 |
. . . . . . . 8
| |
| 25 | 22, 23, 24 | mulassd 8103 |
. . . . . . 7
|
| 26 | 21, 25 | eqtrd 2239 |
. . . . . 6
|
| 27 | 26 | oveq1d 5966 |
. . . . 5
|
| 28 | 4nn0 9321 |
. . . . . . . . 9
| |
| 29 | 28 | a1i 9 |
. . . . . . . 8
|
| 30 | 29, 9 | nn0mulcld 9360 |
. . . . . . 7
|
| 31 | 30 | nn0cnd 9357 |
. . . . . 6
|
| 32 | 2ap0 9136 |
. . . . . . 7
| |
| 33 | 32 | a1i 9 |
. . . . . 6
|
| 34 | 31, 22, 33 | divcanap3d 8875 |
. . . . 5
|
| 35 | 14, 27, 34 | 3eqtrd 2243 |
. . . 4
|
| 36 | 1cnd 8095 |
. . . . . . . 8
| |
| 37 | 4ap0 9142 |
. . . . . . . . 9
| |
| 38 | 37 | a1i 9 |
. . . . . . . 8
|
| 39 | 11, 36, 23, 38 | divdirapd 8909 |
. . . . . . 7
|
| 40 | 8cn 9129 |
. . . . . . . . . . 11
| |
| 41 | 40 | a1i 9 |
. . . . . . . . . 10
|
| 42 | 41, 24, 23, 38 | div23apd 8908 |
. . . . . . . . 9
|
| 43 | 17 | eqcomi 2210 |
. . . . . . . . . . . . 13
|
| 44 | 43 | oveq1i 5961 |
. . . . . . . . . . . 12
|
| 45 | 16, 15, 37 | divcanap3i 8838 |
. . . . . . . . . . . 12
|
| 46 | 44, 45 | eqtri 2227 |
. . . . . . . . . . 11
|
| 47 | 46 | a1i 9 |
. . . . . . . . . 10
|
| 48 | 47 | oveq1d 5966 |
. . . . . . . . 9
|
| 49 | 42, 48 | eqtrd 2239 |
. . . . . . . 8
|
| 50 | 49 | oveq1d 5966 |
. . . . . . 7
|
| 51 | 39, 50 | eqtrd 2239 |
. . . . . 6
|
| 52 | 51 | fveq2d 5587 |
. . . . 5
|
| 53 | 1lt4 9218 |
. . . . . 6
| |
| 54 | 2nn0 9319 |
. . . . . . . . . 10
| |
| 55 | 54 | a1i 9 |
. . . . . . . . 9
|
| 56 | 55, 9 | nn0mulcld 9360 |
. . . . . . . 8
|
| 57 | 56 | nn0zd 9500 |
. . . . . . 7
|
| 58 | 1nn0 9318 |
. . . . . . . 8
| |
| 59 | 58 | a1i 9 |
. . . . . . 7
|
| 60 | 4nn 9207 |
. . . . . . . 8
| |
| 61 | 60 | a1i 9 |
. . . . . . 7
|
| 62 | adddivflid 10442 |
. . . . . . 7
| |
| 63 | 57, 59, 61, 62 | syl3anc 1250 |
. . . . . 6
|
| 64 | 53, 63 | mpbii 148 |
. . . . 5
|
| 65 | 52, 64 | eqtrd 2239 |
. . . 4
|
| 66 | 35, 65 | oveq12d 5969 |
. . 3
|
| 67 | 2t2e4 9198 |
. . . . . . . 8
| |
| 68 | 67 | eqcomi 2210 |
. . . . . . 7
|
| 69 | 68 | a1i 9 |
. . . . . 6
|
| 70 | 69 | oveq1d 5966 |
. . . . 5
|
| 71 | 22, 22, 24 | mulassd 8103 |
. . . . 5
|
| 72 | 70, 71 | eqtrd 2239 |
. . . 4
|
| 73 | 72 | oveq1d 5966 |
. . 3
|
| 74 | 56 | nn0cnd 9357 |
. . . 4
|
| 75 | 2txmxeqx 9175 |
. . . 4
| |
| 76 | 74, 75 | syl 14 |
. . 3
|
| 77 | 66, 73, 76 | 3eqtrd 2243 |
. 2
|
| 78 | 6, 77 | sylan9eqr 2261 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-n0 9303 df-z 9380 df-q 9748 df-rp 9783 df-fl 10420 |
| This theorem is referenced by: 2lgslem3a1 15618 |
| Copyright terms: Public domain | W3C validator |