ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3d Unicode version

Theorem 2lgslem3d 15740
Description: Lemma for 2lgslem3d1 15744. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3d  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5981 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  7 )  - 
1 ) )
32oveq1d 5989 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  7 )  -  1 )  / 
2 ) )
4 fvoveq1 5997 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  7 )  /  4 ) ) )
53, 4oveq12d 5992 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
61, 5eqtrid 2254 . 2  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
7 8nn0 9360 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9395 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9392 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 7cn 9162 . . . . . . . . 9  |-  7  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  7  e.  CC )
14 1cnd 8130 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8445 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( 8  x.  K )  +  ( 7  -  1 ) ) )
16 4t2e8 9237 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2213 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5989 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9156 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9149 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9347 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8267 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2242 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 7m1e6 9202 . . . . . . . . 9  |-  ( 7  -  1 )  =  6
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 7  -  1 )  =  6 )
2926, 28oveq12d 5992 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 7  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3015, 29eqtrd 2242 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3130oveq1d 5989 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2
) )
32 4nn0 9356 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9395 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9392 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8135 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 6cn 9160 . . . . . . 7  |-  6  e.  CC
3837a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  6  e.  CC )
39 2rp 9822 . . . . . . . 8  |-  2  e.  RR+
4039a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
4140rpap0d 9866 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4236, 38, 23, 41divdirapd 8944 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 6  /  2 ) ) )
4335, 23, 41divcanap4d 8911 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 3t2e6 9235 . . . . . . . . . 10  |-  ( 3  x.  2 )  =  6
4544eqcomi 2213 . . . . . . . . 9  |-  6  =  ( 3  x.  2 )
4645oveq1i 5984 . . . . . . . 8  |-  ( 6  /  2 )  =  ( ( 3  x.  2 )  /  2
)
47 3cn 9153 . . . . . . . . 9  |-  3  e.  CC
48 2ap0 9171 . . . . . . . . 9  |-  2 #  0
4947, 22, 48divcanap4i 8874 . . . . . . . 8  |-  ( ( 3  x.  2 )  /  2 )  =  3
5046, 49eqtri 2230 . . . . . . 7  |-  ( 6  /  2 )  =  3
5150a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 6  /  2 )  =  3 )
5243, 51oveq12d 5992 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 6  / 
2 ) )  =  ( ( 4  x.  K )  +  3 ) )
5331, 42, 523eqtrd 2246 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  3 ) )
54 4ap0 9177 . . . . . . . . 9  |-  4 #  0
5554a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5611, 13, 21, 55divdirapd 8944 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 7  /  4 ) ) )
57 8cn 9164 . . . . . . . . . . 11  |-  8  e.  CC
5857a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5958, 24, 21, 55div23apd 8943 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
6017oveq1i 5984 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
6122, 20, 54divcanap3i 8873 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
6260, 61eqtri 2230 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
6362a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
6463oveq1d 5989 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
6559, 64eqtrd 2242 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6665oveq1d 5989 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 7  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
6756, 66eqtrd 2242 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
6867fveq2d 5607 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 7  /  4 ) ) ) )
69 3lt4 9251 . . . . . 6  |-  3  <  4
70 2nn0 9354 . . . . . . . . . . . 12  |-  2  e.  NN0
7170a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
7271, 9nn0mulcld 9395 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
7372nn0zd 9535 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
7473peano2zd 9540 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
75 3nn0 9355 . . . . . . . . 9  |-  3  e.  NN0
7675a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
77 4nn 9242 . . . . . . . . 9  |-  4  e.  NN
7877a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
79 adddivflid 10479 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8074, 76, 78, 79syl3anc 1252 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8123, 24mulcld 8135 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
8247a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  3  e.  CC )
8382, 21, 55divclapd 8905 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 3  /  4 )  e.  CC )
8481, 14, 83addassd 8137 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4 ) ) ) )
85 4p3e7 9223 . . . . . . . . . . . . . . 15  |-  ( 4  +  3 )  =  7
8685eqcomi 2213 . . . . . . . . . . . . . 14  |-  7  =  ( 4  +  3 )
8786oveq1i 5984 . . . . . . . . . . . . 13  |-  ( 7  /  4 )  =  ( ( 4  +  3 )  /  4
)
8820, 47, 20, 54divdirapi 8884 . . . . . . . . . . . . 13  |-  ( ( 4  +  3 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 3  /  4 ) )
8920, 54dividapi 8860 . . . . . . . . . . . . . 14  |-  ( 4  /  4 )  =  1
9089oveq1i 5984 . . . . . . . . . . . . 13  |-  ( ( 4  /  4 )  +  ( 3  / 
4 ) )  =  ( 1  +  ( 3  /  4 ) )
9187, 88, 903eqtri 2234 . . . . . . . . . . . 12  |-  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) )
9291a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) ) )
9392eqcomd 2215 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  +  ( 3  / 
4 ) )  =  ( 7  /  4
) )
9493oveq2d 5990 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
9584, 94eqtrd 2242 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
9695fveqeq2d 5611 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9780, 96bitrd 188 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9869, 97mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 7  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
9968, 98eqtrd 2242 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
10053, 99oveq12d 5992 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  3 )  -  (
( 2  x.  K
)  +  1 ) ) )
10172nn0cnd 9392 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
10235, 82, 101, 14addsub4d 8472 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  3 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 3  -  1 ) ) )
103 2t2e4 9233 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
104103eqcomi 2213 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
105104a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
106105oveq1d 5989 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
10723, 23, 24mulassd 8138 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
108106, 107eqtrd 2242 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
109108oveq1d 5989 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
110 2txmxeqx 9210 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
111101, 110syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
112109, 111eqtrd 2242 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
113 3m1e2 9198 . . . . 5  |-  ( 3  -  1 )  =  2
114113a1i 9 . . . 4  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
115112, 114oveq12d 5992 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 3  -  1 ) )  =  ( ( 2  x.  K )  +  2 ) )
116100, 102, 1153eqtrd 2246 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( 2  x.  K )  +  2 ) )
1176, 116sylan9eqr 2264 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149    - cmin 8285   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   3c3 9130   4c4 9131   6c6 9133   7c7 9134   8c8 9135   NN0cn0 9337   ZZcz 9414   RR+crp 9817   |_cfl 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457
This theorem is referenced by:  2lgslem3d1  15744
  Copyright terms: Public domain W3C validator