ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3d Unicode version

Theorem 2lgslem3d 15244
Description: Lemma for 2lgslem3d1 15248. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3d  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5926 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  7 )  - 
1 ) )
32oveq1d 5934 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  7 )  -  1 )  / 
2 ) )
4 fvoveq1 5942 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  7 )  /  4 ) ) )
53, 4oveq12d 5937 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
61, 5eqtrid 2238 . 2  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
7 8nn0 9266 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9301 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9298 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 7cn 9068 . . . . . . . . 9  |-  7  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  7  e.  CC )
14 1cnd 8037 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8352 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( 8  x.  K )  +  ( 7  -  1 ) ) )
16 4t2e8 9143 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2197 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5934 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9062 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9055 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9253 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8174 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2226 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 7m1e6 9108 . . . . . . . . 9  |-  ( 7  -  1 )  =  6
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 7  -  1 )  =  6 )
2926, 28oveq12d 5937 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 7  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3015, 29eqtrd 2226 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3130oveq1d 5934 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2
) )
32 4nn0 9262 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9301 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9298 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8042 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 6cn 9066 . . . . . . 7  |-  6  e.  CC
3837a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  6  e.  CC )
39 2rp 9727 . . . . . . . 8  |-  2  e.  RR+
4039a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
4140rpap0d 9771 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4236, 38, 23, 41divdirapd 8850 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 6  /  2 ) ) )
4335, 23, 41divcanap4d 8817 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 3t2e6 9141 . . . . . . . . . 10  |-  ( 3  x.  2 )  =  6
4544eqcomi 2197 . . . . . . . . 9  |-  6  =  ( 3  x.  2 )
4645oveq1i 5929 . . . . . . . 8  |-  ( 6  /  2 )  =  ( ( 3  x.  2 )  /  2
)
47 3cn 9059 . . . . . . . . 9  |-  3  e.  CC
48 2ap0 9077 . . . . . . . . 9  |-  2 #  0
4947, 22, 48divcanap4i 8780 . . . . . . . 8  |-  ( ( 3  x.  2 )  /  2 )  =  3
5046, 49eqtri 2214 . . . . . . 7  |-  ( 6  /  2 )  =  3
5150a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 6  /  2 )  =  3 )
5243, 51oveq12d 5937 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 6  / 
2 ) )  =  ( ( 4  x.  K )  +  3 ) )
5331, 42, 523eqtrd 2230 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  3 ) )
54 4ap0 9083 . . . . . . . . 9  |-  4 #  0
5554a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5611, 13, 21, 55divdirapd 8850 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 7  /  4 ) ) )
57 8cn 9070 . . . . . . . . . . 11  |-  8  e.  CC
5857a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5958, 24, 21, 55div23apd 8849 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
6017oveq1i 5929 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
6122, 20, 54divcanap3i 8779 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
6260, 61eqtri 2214 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
6362a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
6463oveq1d 5934 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
6559, 64eqtrd 2226 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6665oveq1d 5934 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 7  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
6756, 66eqtrd 2226 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
6867fveq2d 5559 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 7  /  4 ) ) ) )
69 3lt4 9157 . . . . . 6  |-  3  <  4
70 2nn0 9260 . . . . . . . . . . . 12  |-  2  e.  NN0
7170a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
7271, 9nn0mulcld 9301 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
7372nn0zd 9440 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
7473peano2zd 9445 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
75 3nn0 9261 . . . . . . . . 9  |-  3  e.  NN0
7675a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
77 4nn 9148 . . . . . . . . 9  |-  4  e.  NN
7877a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
79 adddivflid 10364 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8074, 76, 78, 79syl3anc 1249 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8123, 24mulcld 8042 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
8247a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  3  e.  CC )
8382, 21, 55divclapd 8811 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 3  /  4 )  e.  CC )
8481, 14, 83addassd 8044 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4 ) ) ) )
85 4p3e7 9129 . . . . . . . . . . . . . . 15  |-  ( 4  +  3 )  =  7
8685eqcomi 2197 . . . . . . . . . . . . . 14  |-  7  =  ( 4  +  3 )
8786oveq1i 5929 . . . . . . . . . . . . 13  |-  ( 7  /  4 )  =  ( ( 4  +  3 )  /  4
)
8820, 47, 20, 54divdirapi 8790 . . . . . . . . . . . . 13  |-  ( ( 4  +  3 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 3  /  4 ) )
8920, 54dividapi 8766 . . . . . . . . . . . . . 14  |-  ( 4  /  4 )  =  1
9089oveq1i 5929 . . . . . . . . . . . . 13  |-  ( ( 4  /  4 )  +  ( 3  / 
4 ) )  =  ( 1  +  ( 3  /  4 ) )
9187, 88, 903eqtri 2218 . . . . . . . . . . . 12  |-  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) )
9291a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) ) )
9392eqcomd 2199 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  +  ( 3  / 
4 ) )  =  ( 7  /  4
) )
9493oveq2d 5935 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
9584, 94eqtrd 2226 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
9695fveqeq2d 5563 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9780, 96bitrd 188 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9869, 97mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 7  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
9968, 98eqtrd 2226 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
10053, 99oveq12d 5937 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  3 )  -  (
( 2  x.  K
)  +  1 ) ) )
10172nn0cnd 9298 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
10235, 82, 101, 14addsub4d 8379 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  3 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 3  -  1 ) ) )
103 2t2e4 9139 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
104103eqcomi 2197 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
105104a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
106105oveq1d 5934 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
10723, 23, 24mulassd 8045 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
108106, 107eqtrd 2226 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
109108oveq1d 5934 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
110 2txmxeqx 9116 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
111101, 110syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
112109, 111eqtrd 2226 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
113 3m1e2 9104 . . . . 5  |-  ( 3  -  1 )  =  2
114113a1i 9 . . . 4  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
115112, 114oveq12d 5937 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 3  -  1 ) )  =  ( ( 2  x.  K )  +  2 ) )
116100, 102, 1153eqtrd 2230 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( 2  x.  K )  +  2 ) )
1176, 116sylan9eqr 2248 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    - cmin 8192   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   3c3 9036   4c4 9037   6c6 9039   7c7 9040   8c8 9041   NN0cn0 9243   ZZcz 9320   RR+crp 9722   |_cfl 10340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342
This theorem is referenced by:  2lgslem3d1  15248
  Copyright terms: Public domain W3C validator