ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3d Unicode version

Theorem 2lgslem3d 15421
Description: Lemma for 2lgslem3d1 15425. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3d  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )

Proof of Theorem 2lgslem3d
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5932 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  7 )  - 
1 ) )
32oveq1d 5940 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  7 )  -  1 )  / 
2 ) )
4 fvoveq1 5948 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  7 )  /  4 ) ) )
53, 4oveq12d 5943 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
61, 5eqtrid 2241 . 2  |-  ( P  =  ( ( 8  x.  K )  +  7 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  7 )  /  4 ) ) ) )
7 8nn0 9289 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9324 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9321 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 7cn 9091 . . . . . . . . 9  |-  7  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  7  e.  CC )
14 1cnd 8059 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8374 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( 8  x.  K )  +  ( 7  -  1 ) ) )
16 4t2e8 9166 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2200 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5940 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9085 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9078 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9276 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8196 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 7m1e6 9131 . . . . . . . . 9  |-  ( 7  -  1 )  =  6
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 7  -  1 )  =  6 )
2926, 28oveq12d 5943 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 7  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3015, 29eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  6 ) )
3130oveq1d 5940 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2
) )
32 4nn0 9285 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9324 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9321 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8064 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 6cn 9089 . . . . . . 7  |-  6  e.  CC
3837a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  6  e.  CC )
39 2rp 9750 . . . . . . . 8  |-  2  e.  RR+
4039a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
4140rpap0d 9794 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4236, 38, 23, 41divdirapd 8873 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  6 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 6  /  2 ) ) )
4335, 23, 41divcanap4d 8840 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 3t2e6 9164 . . . . . . . . . 10  |-  ( 3  x.  2 )  =  6
4544eqcomi 2200 . . . . . . . . 9  |-  6  =  ( 3  x.  2 )
4645oveq1i 5935 . . . . . . . 8  |-  ( 6  /  2 )  =  ( ( 3  x.  2 )  /  2
)
47 3cn 9082 . . . . . . . . 9  |-  3  e.  CC
48 2ap0 9100 . . . . . . . . 9  |-  2 #  0
4947, 22, 48divcanap4i 8803 . . . . . . . 8  |-  ( ( 3  x.  2 )  /  2 )  =  3
5046, 49eqtri 2217 . . . . . . 7  |-  ( 6  /  2 )  =  3
5150a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 6  /  2 )  =  3 )
5243, 51oveq12d 5943 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 6  / 
2 ) )  =  ( ( 4  x.  K )  +  3 ) )
5331, 42, 523eqtrd 2233 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  3 ) )
54 4ap0 9106 . . . . . . . . 9  |-  4 #  0
5554a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5611, 13, 21, 55divdirapd 8873 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 7  /  4 ) ) )
57 8cn 9093 . . . . . . . . . . 11  |-  8  e.  CC
5857a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5958, 24, 21, 55div23apd 8872 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
6017oveq1i 5935 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
6122, 20, 54divcanap3i 8802 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
6260, 61eqtri 2217 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
6362a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
6463oveq1d 5940 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
6559, 64eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6665oveq1d 5940 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 7  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
6756, 66eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  7 )  /  4 )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
6867fveq2d 5565 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 7  /  4 ) ) ) )
69 3lt4 9180 . . . . . 6  |-  3  <  4
70 2nn0 9283 . . . . . . . . . . . 12  |-  2  e.  NN0
7170a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
7271, 9nn0mulcld 9324 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
7372nn0zd 9463 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
7473peano2zd 9468 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  1 )  e.  ZZ )
75 3nn0 9284 . . . . . . . . 9  |-  3  e.  NN0
7675a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
77 4nn 9171 . . . . . . . . 9  |-  4  e.  NN
7877a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  e.  NN )
79 adddivflid 10399 . . . . . . . 8  |-  ( ( ( ( 2  x.  K )  +  1 )  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8074, 76, 78, 79syl3anc 1249 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( ( 2  x.  K )  +  1 )  +  ( 3  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
8123, 24mulcld 8064 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
8247a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  3  e.  CC )
8382, 21, 55divclapd 8834 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 3  /  4 )  e.  CC )
8481, 14, 83addassd 8066 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4 ) ) ) )
85 4p3e7 9152 . . . . . . . . . . . . . . 15  |-  ( 4  +  3 )  =  7
8685eqcomi 2200 . . . . . . . . . . . . . 14  |-  7  =  ( 4  +  3 )
8786oveq1i 5935 . . . . . . . . . . . . 13  |-  ( 7  /  4 )  =  ( ( 4  +  3 )  /  4
)
8820, 47, 20, 54divdirapi 8813 . . . . . . . . . . . . 13  |-  ( ( 4  +  3 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 3  /  4 ) )
8920, 54dividapi 8789 . . . . . . . . . . . . . 14  |-  ( 4  /  4 )  =  1
9089oveq1i 5935 . . . . . . . . . . . . 13  |-  ( ( 4  /  4 )  +  ( 3  / 
4 ) )  =  ( 1  +  ( 3  /  4 ) )
9187, 88, 903eqtri 2221 . . . . . . . . . . . 12  |-  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) )
9291a1i 9 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( 7  /  4 )  =  ( 1  +  ( 3  /  4 ) ) )
9392eqcomd 2202 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 1  +  ( 3  / 
4 ) )  =  ( 7  /  4
) )
9493oveq2d 5941 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 2  x.  K )  +  ( 1  +  ( 3  /  4
) ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
9584, 94eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )
9695fveqeq2d 5569 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( |_ `  ( ( ( 2  x.  K
)  +  1 )  +  ( 3  / 
4 ) ) )  =  ( ( 2  x.  K )  +  1 )  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9780, 96bitrd 188 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 7  /  4 ) ) )  =  ( ( 2  x.  K
)  +  1 ) ) )
9869, 97mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 7  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
9968, 98eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  7 )  / 
4 ) )  =  ( ( 2  x.  K )  +  1 ) )
10053, 99oveq12d 5943 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  3 )  -  (
( 2  x.  K
)  +  1 ) ) )
10172nn0cnd 9321 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
10235, 82, 101, 14addsub4d 8401 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  3 )  -  ( ( 2  x.  K )  +  1 ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  ( 3  -  1 ) ) )
103 2t2e4 9162 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
104103eqcomi 2200 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
105104a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
106105oveq1d 5940 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
10723, 23, 24mulassd 8067 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
108106, 107eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
109108oveq1d 5940 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
110 2txmxeqx 9139 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
111101, 110syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
112109, 111eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
113 3m1e2 9127 . . . . 5  |-  ( 3  -  1 )  =  2
114113a1i 9 . . . 4  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
115112, 114oveq12d 5943 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  ( 3  -  1 ) )  =  ( ( 2  x.  K )  +  2 ) )
116100, 102, 1153eqtrd 2233 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  7 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  7 )  /  4
) ) )  =  ( ( 2  x.  K )  +  2 ) )
1176, 116sylan9eqr 2251 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  7 ) )  ->  N  =  ( ( 2  x.  K
)  +  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   NNcn 9007   2c2 9058   3c3 9059   4c4 9060   6c6 9062   7c7 9063   8c8 9064   NN0cn0 9266   ZZcz 9343   RR+crp 9745   |_cfl 10375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377
This theorem is referenced by:  2lgslem3d1  15425
  Copyright terms: Public domain W3C validator