ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3b Unicode version

Theorem 2lgslem3b 15781
Description: Lemma for 2lgslem3b1 15785. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3b  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 6014 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  3 )  - 
1 ) )
32oveq1d 6022 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  3 )  -  1 )  / 
2 ) )
4 fvoveq1 6030 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  3 )  /  4 ) ) )
53, 4oveq12d 6025 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
61, 5eqtrid 2274 . 2  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
7 8nn0 9400 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9435 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9432 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 3cn 9193 . . . . . . . . 9  |-  3  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e.  CC )
14 1cnd 8170 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8485 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( 8  x.  K )  +  ( 3  -  1 ) ) )
16 4t2e8 9277 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2233 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 6022 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9196 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9189 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9387 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8307 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2262 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 3m1e2 9238 . . . . . . . . 9  |-  ( 3  -  1 )  =  2
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
2926, 28oveq12d 6025 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 3  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3015, 29eqtrd 2262 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3130oveq1d 6022 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2
) )
32 4nn0 9396 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9435 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9432 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8175 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9862 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9906 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 23, 23, 39divdirapd 8984 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 2  /  2 ) ) )
41 2ap0 9211 . . . . . . . 8  |-  2 #  0
4241a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2 #  0 )
4335, 23, 42divcanap4d 8951 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 2div2e1 9251 . . . . . . 7  |-  ( 2  /  2 )  =  1
4544a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  /  2 )  =  1 )
4643, 45oveq12d 6025 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( 4  x.  K )  +  1 ) )
4731, 40, 463eqtrd 2266 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  1 ) )
48 4ap0 9217 . . . . . . . . 9  |-  4 #  0
4948a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5011, 13, 21, 49divdirapd 8984 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 3  /  4 ) ) )
51 8cn 9204 . . . . . . . . . . 11  |-  8  e.  CC
5251a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5352, 24, 21, 49div23apd 8983 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5417oveq1i 6017 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5522, 20, 48divcanap3i 8913 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5654, 55eqtri 2250 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5756a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5857oveq1d 6022 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5953, 58eqtrd 2262 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6059oveq1d 6022 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6150, 60eqtrd 2262 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6261fveq2d 5633 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 3  /  4 ) ) ) )
63 3lt4 9291 . . . . . 6  |-  3  <  4
64 2nn0 9394 . . . . . . . . . 10  |-  2  e.  NN0
6564a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6665, 9nn0mulcld 9435 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6766nn0zd 9575 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
68 3nn0 9395 . . . . . . . 8  |-  3  e.  NN0
6968a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
70 4nn 9282 . . . . . . . 8  |-  4  e.  NN
7170a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  4  e.  NN )
72 adddivflid 10520 . . . . . . 7  |-  ( ( ( 2  x.  K
)  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7367, 69, 71, 72syl3anc 1271 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7463, 73mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 3  /  4
) ) )  =  ( 2  x.  K
) )
7562, 74eqtrd 2262 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( 2  x.  K
) )
7647, 75oveq12d 6025 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  1 )  -  (
2  x.  K ) ) )
7766nn0cnd 9432 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7835, 14, 77addsubd 8486 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  1 )  -  ( 2  x.  K ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  1 ) )
79 2t2e4 9273 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8079eqcomi 2233 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
8180a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
8281oveq1d 6022 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
8323, 23, 24mulassd 8178 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8482, 83eqtrd 2262 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8584oveq1d 6022 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
86 2txmxeqx 9250 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
8777, 86syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8885, 87eqtrd 2262 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8988oveq1d 6022 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  1 )  =  ( ( 2  x.  K )  +  1 ) )
9076, 78, 893eqtrd 2266 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
916, 90sylan9eqr 2284 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    x. cmul 8012    < clt 8189    - cmin 8325   # cap 8736    / cdiv 8827   NNcn 9118   2c2 9169   3c3 9170   4c4 9171   8c8 9175   NN0cn0 9377   ZZcz 9454   RR+crp 9857   |_cfl 10496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498
This theorem is referenced by:  2lgslem3b1  15785
  Copyright terms: Public domain W3C validator