ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3b Unicode version

Theorem 2lgslem3b 15242
Description: Lemma for 2lgslem3b1 15246. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3b  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5926 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  3 )  - 
1 ) )
32oveq1d 5934 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  3 )  -  1 )  / 
2 ) )
4 fvoveq1 5942 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  3 )  /  4 ) ) )
53, 4oveq12d 5937 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
61, 5eqtrid 2238 . 2  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
7 8nn0 9266 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9301 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9298 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 3cn 9059 . . . . . . . . 9  |-  3  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e.  CC )
14 1cnd 8037 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8352 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( 8  x.  K )  +  ( 3  -  1 ) ) )
16 4t2e8 9143 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2197 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5934 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9062 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9055 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9253 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8174 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2226 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 3m1e2 9104 . . . . . . . . 9  |-  ( 3  -  1 )  =  2
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
2926, 28oveq12d 5937 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 3  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3015, 29eqtrd 2226 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3130oveq1d 5934 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2
) )
32 4nn0 9262 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9301 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9298 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8042 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9727 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9771 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 23, 23, 39divdirapd 8850 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 2  /  2 ) ) )
41 2ap0 9077 . . . . . . . 8  |-  2 #  0
4241a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2 #  0 )
4335, 23, 42divcanap4d 8817 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 2div2e1 9117 . . . . . . 7  |-  ( 2  /  2 )  =  1
4544a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  /  2 )  =  1 )
4643, 45oveq12d 5937 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( 4  x.  K )  +  1 ) )
4731, 40, 463eqtrd 2230 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  1 ) )
48 4ap0 9083 . . . . . . . . 9  |-  4 #  0
4948a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5011, 13, 21, 49divdirapd 8850 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 3  /  4 ) ) )
51 8cn 9070 . . . . . . . . . . 11  |-  8  e.  CC
5251a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5352, 24, 21, 49div23apd 8849 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5417oveq1i 5929 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5522, 20, 48divcanap3i 8779 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5654, 55eqtri 2214 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5756a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5857oveq1d 5934 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5953, 58eqtrd 2226 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6059oveq1d 5934 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6150, 60eqtrd 2226 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6261fveq2d 5559 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 3  /  4 ) ) ) )
63 3lt4 9157 . . . . . 6  |-  3  <  4
64 2nn0 9260 . . . . . . . . . 10  |-  2  e.  NN0
6564a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6665, 9nn0mulcld 9301 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6766nn0zd 9440 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
68 3nn0 9261 . . . . . . . 8  |-  3  e.  NN0
6968a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
70 4nn 9148 . . . . . . . 8  |-  4  e.  NN
7170a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  4  e.  NN )
72 adddivflid 10364 . . . . . . 7  |-  ( ( ( 2  x.  K
)  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7367, 69, 71, 72syl3anc 1249 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7463, 73mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 3  /  4
) ) )  =  ( 2  x.  K
) )
7562, 74eqtrd 2226 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( 2  x.  K
) )
7647, 75oveq12d 5937 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  1 )  -  (
2  x.  K ) ) )
7766nn0cnd 9298 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7835, 14, 77addsubd 8353 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  1 )  -  ( 2  x.  K ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  1 ) )
79 2t2e4 9139 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8079eqcomi 2197 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
8180a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
8281oveq1d 5934 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
8323, 23, 24mulassd 8045 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8482, 83eqtrd 2226 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8584oveq1d 5934 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
86 2txmxeqx 9116 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
8777, 86syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8885, 87eqtrd 2226 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8988oveq1d 5934 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  1 )  =  ( ( 2  x.  K )  +  1 ) )
9076, 78, 893eqtrd 2230 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
916, 90sylan9eqr 2248 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    - cmin 8192   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   3c3 9036   4c4 9037   8c8 9041   NN0cn0 9243   ZZcz 9320   RR+crp 9722   |_cfl 10340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342
This theorem is referenced by:  2lgslem3b1  15246
  Copyright terms: Public domain W3C validator