ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3b Unicode version

Theorem 2lgslem3b 15361
Description: Lemma for 2lgslem3b1 15365. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3b  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5930 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  3 )  - 
1 ) )
32oveq1d 5938 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  3 )  -  1 )  / 
2 ) )
4 fvoveq1 5946 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  3 )  /  4 ) ) )
53, 4oveq12d 5941 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
61, 5eqtrid 2241 . 2  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
7 8nn0 9275 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9310 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9307 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 3cn 9068 . . . . . . . . 9  |-  3  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e.  CC )
14 1cnd 8045 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8360 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( 8  x.  K )  +  ( 3  -  1 ) ) )
16 4t2e8 9152 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2200 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5938 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9071 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9064 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9262 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8182 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 3m1e2 9113 . . . . . . . . 9  |-  ( 3  -  1 )  =  2
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
2926, 28oveq12d 5941 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 3  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3015, 29eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3130oveq1d 5938 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2
) )
32 4nn0 9271 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9310 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9307 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8050 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9736 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9780 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 23, 23, 39divdirapd 8859 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 2  /  2 ) ) )
41 2ap0 9086 . . . . . . . 8  |-  2 #  0
4241a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2 #  0 )
4335, 23, 42divcanap4d 8826 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 2div2e1 9126 . . . . . . 7  |-  ( 2  /  2 )  =  1
4544a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  /  2 )  =  1 )
4643, 45oveq12d 5941 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( 4  x.  K )  +  1 ) )
4731, 40, 463eqtrd 2233 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  1 ) )
48 4ap0 9092 . . . . . . . . 9  |-  4 #  0
4948a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5011, 13, 21, 49divdirapd 8859 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 3  /  4 ) ) )
51 8cn 9079 . . . . . . . . . . 11  |-  8  e.  CC
5251a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5352, 24, 21, 49div23apd 8858 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5417oveq1i 5933 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5522, 20, 48divcanap3i 8788 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5654, 55eqtri 2217 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5756a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5857oveq1d 5938 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5953, 58eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6059oveq1d 5938 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6150, 60eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6261fveq2d 5563 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 3  /  4 ) ) ) )
63 3lt4 9166 . . . . . 6  |-  3  <  4
64 2nn0 9269 . . . . . . . . . 10  |-  2  e.  NN0
6564a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6665, 9nn0mulcld 9310 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6766nn0zd 9449 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
68 3nn0 9270 . . . . . . . 8  |-  3  e.  NN0
6968a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
70 4nn 9157 . . . . . . . 8  |-  4  e.  NN
7170a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  4  e.  NN )
72 adddivflid 10385 . . . . . . 7  |-  ( ( ( 2  x.  K
)  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7367, 69, 71, 72syl3anc 1249 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7463, 73mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 3  /  4
) ) )  =  ( 2  x.  K
) )
7562, 74eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( 2  x.  K
) )
7647, 75oveq12d 5941 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  1 )  -  (
2  x.  K ) ) )
7766nn0cnd 9307 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7835, 14, 77addsubd 8361 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  1 )  -  ( 2  x.  K ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  1 ) )
79 2t2e4 9148 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8079eqcomi 2200 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
8180a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
8281oveq1d 5938 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
8323, 23, 24mulassd 8053 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8482, 83eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8584oveq1d 5938 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
86 2txmxeqx 9125 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
8777, 86syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8885, 87eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8988oveq1d 5938 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  1 )  =  ( ( 2  x.  K )  +  1 ) )
9076, 78, 893eqtrd 2233 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
916, 90sylan9eqr 2251 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7880   0cc0 7882   1c1 7883    + caddc 7885    x. cmul 7887    < clt 8064    - cmin 8200   # cap 8611    / cdiv 8702   NNcn 8993   2c2 9044   3c3 9045   4c4 9046   8c8 9050   NN0cn0 9252   ZZcz 9329   RR+crp 9731   |_cfl 10361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-5 9055  df-6 9056  df-7 9057  df-8 9058  df-n0 9253  df-z 9330  df-q 9697  df-rp 9732  df-fl 10363
This theorem is referenced by:  2lgslem3b1  15365
  Copyright terms: Public domain W3C validator