ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3b Unicode version

Theorem 2lgslem3b 15738
Description: Lemma for 2lgslem3b1 15742. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3b  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5981 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  3 )  - 
1 ) )
32oveq1d 5989 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  3 )  -  1 )  / 
2 ) )
4 fvoveq1 5997 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  3 )  /  4 ) ) )
53, 4oveq12d 5992 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
61, 5eqtrid 2254 . 2  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
7 8nn0 9360 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9395 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9392 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 3cn 9153 . . . . . . . . 9  |-  3  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e.  CC )
14 1cnd 8130 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8445 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( 8  x.  K )  +  ( 3  -  1 ) ) )
16 4t2e8 9237 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2213 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5989 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9156 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9149 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9347 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8267 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2242 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 3m1e2 9198 . . . . . . . . 9  |-  ( 3  -  1 )  =  2
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
2926, 28oveq12d 5992 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 3  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3015, 29eqtrd 2242 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3130oveq1d 5989 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2
) )
32 4nn0 9356 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9395 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9392 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8135 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9822 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9866 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 23, 23, 39divdirapd 8944 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 2  /  2 ) ) )
41 2ap0 9171 . . . . . . . 8  |-  2 #  0
4241a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2 #  0 )
4335, 23, 42divcanap4d 8911 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 2div2e1 9211 . . . . . . 7  |-  ( 2  /  2 )  =  1
4544a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  /  2 )  =  1 )
4643, 45oveq12d 5992 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( 4  x.  K )  +  1 ) )
4731, 40, 463eqtrd 2246 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  1 ) )
48 4ap0 9177 . . . . . . . . 9  |-  4 #  0
4948a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5011, 13, 21, 49divdirapd 8944 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 3  /  4 ) ) )
51 8cn 9164 . . . . . . . . . . 11  |-  8  e.  CC
5251a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5352, 24, 21, 49div23apd 8943 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5417oveq1i 5984 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5522, 20, 48divcanap3i 8873 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5654, 55eqtri 2230 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5756a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5857oveq1d 5989 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5953, 58eqtrd 2242 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6059oveq1d 5989 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6150, 60eqtrd 2242 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6261fveq2d 5607 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 3  /  4 ) ) ) )
63 3lt4 9251 . . . . . 6  |-  3  <  4
64 2nn0 9354 . . . . . . . . . 10  |-  2  e.  NN0
6564a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6665, 9nn0mulcld 9395 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6766nn0zd 9535 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
68 3nn0 9355 . . . . . . . 8  |-  3  e.  NN0
6968a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
70 4nn 9242 . . . . . . . 8  |-  4  e.  NN
7170a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  4  e.  NN )
72 adddivflid 10479 . . . . . . 7  |-  ( ( ( 2  x.  K
)  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7367, 69, 71, 72syl3anc 1252 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7463, 73mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 3  /  4
) ) )  =  ( 2  x.  K
) )
7562, 74eqtrd 2242 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( 2  x.  K
) )
7647, 75oveq12d 5992 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  1 )  -  (
2  x.  K ) ) )
7766nn0cnd 9392 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7835, 14, 77addsubd 8446 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  1 )  -  ( 2  x.  K ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  1 ) )
79 2t2e4 9233 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8079eqcomi 2213 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
8180a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
8281oveq1d 5989 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
8323, 23, 24mulassd 8138 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8482, 83eqtrd 2242 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8584oveq1d 5989 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
86 2txmxeqx 9210 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
8777, 86syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8885, 87eqtrd 2242 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8988oveq1d 5989 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  1 )  =  ( ( 2  x.  K )  +  1 ) )
9076, 78, 893eqtrd 2246 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
916, 90sylan9eqr 2264 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149    - cmin 8285   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   3c3 9130   4c4 9131   8c8 9135   NN0cn0 9337   ZZcz 9414   RR+crp 9817   |_cfl 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457
This theorem is referenced by:  2lgslem3b1  15742
  Copyright terms: Public domain W3C validator