| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3b | Unicode version | ||
| Description: Lemma for 2lgslem3b1 15339. (Contributed by AV, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n |
|
| Ref | Expression |
|---|---|
| 2lgslem3b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem2.n |
. . 3
| |
| 2 | oveq1 5929 |
. . . . 5
| |
| 3 | 2 | oveq1d 5937 |
. . . 4
|
| 4 | fvoveq1 5945 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 5940 |
. . 3
|
| 6 | 1, 5 | eqtrid 2241 |
. 2
|
| 7 | 8nn0 9272 |
. . . . . . . . . . 11
| |
| 8 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 9 | id 19 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | nn0mulcld 9307 |
. . . . . . . . 9
|
| 11 | 10 | nn0cnd 9304 |
. . . . . . . 8
|
| 12 | 3cn 9065 |
. . . . . . . . 9
| |
| 13 | 12 | a1i 9 |
. . . . . . . 8
|
| 14 | 1cnd 8042 |
. . . . . . . 8
| |
| 15 | 11, 13, 14 | addsubassd 8357 |
. . . . . . 7
|
| 16 | 4t2e8 9149 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqcomi 2200 |
. . . . . . . . . . 11
|
| 18 | 17 | a1i 9 |
. . . . . . . . . 10
|
| 19 | 18 | oveq1d 5937 |
. . . . . . . . 9
|
| 20 | 4cn 9068 |
. . . . . . . . . . 11
| |
| 21 | 20 | a1i 9 |
. . . . . . . . . 10
|
| 22 | 2cn 9061 |
. . . . . . . . . . 11
| |
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | nn0cn 9259 |
. . . . . . . . . 10
| |
| 25 | 21, 23, 24 | mul32d 8179 |
. . . . . . . . 9
|
| 26 | 19, 25 | eqtrd 2229 |
. . . . . . . 8
|
| 27 | 3m1e2 9110 |
. . . . . . . . 9
| |
| 28 | 27 | a1i 9 |
. . . . . . . 8
|
| 29 | 26, 28 | oveq12d 5940 |
. . . . . . 7
|
| 30 | 15, 29 | eqtrd 2229 |
. . . . . 6
|
| 31 | 30 | oveq1d 5937 |
. . . . 5
|
| 32 | 4nn0 9268 |
. . . . . . . . . 10
| |
| 33 | 32 | a1i 9 |
. . . . . . . . 9
|
| 34 | 33, 9 | nn0mulcld 9307 |
. . . . . . . 8
|
| 35 | 34 | nn0cnd 9304 |
. . . . . . 7
|
| 36 | 35, 23 | mulcld 8047 |
. . . . . 6
|
| 37 | 2rp 9733 |
. . . . . . . 8
| |
| 38 | 37 | a1i 9 |
. . . . . . 7
|
| 39 | 38 | rpap0d 9777 |
. . . . . 6
|
| 40 | 36, 23, 23, 39 | divdirapd 8856 |
. . . . 5
|
| 41 | 2ap0 9083 |
. . . . . . . 8
| |
| 42 | 41 | a1i 9 |
. . . . . . 7
|
| 43 | 35, 23, 42 | divcanap4d 8823 |
. . . . . 6
|
| 44 | 2div2e1 9123 |
. . . . . . 7
| |
| 45 | 44 | a1i 9 |
. . . . . 6
|
| 46 | 43, 45 | oveq12d 5940 |
. . . . 5
|
| 47 | 31, 40, 46 | 3eqtrd 2233 |
. . . 4
|
| 48 | 4ap0 9089 |
. . . . . . . . 9
| |
| 49 | 48 | a1i 9 |
. . . . . . . 8
|
| 50 | 11, 13, 21, 49 | divdirapd 8856 |
. . . . . . 7
|
| 51 | 8cn 9076 |
. . . . . . . . . . 11
| |
| 52 | 51 | a1i 9 |
. . . . . . . . . 10
|
| 53 | 52, 24, 21, 49 | div23apd 8855 |
. . . . . . . . 9
|
| 54 | 17 | oveq1i 5932 |
. . . . . . . . . . . 12
|
| 55 | 22, 20, 48 | divcanap3i 8785 |
. . . . . . . . . . . 12
|
| 56 | 54, 55 | eqtri 2217 |
. . . . . . . . . . 11
|
| 57 | 56 | a1i 9 |
. . . . . . . . . 10
|
| 58 | 57 | oveq1d 5937 |
. . . . . . . . 9
|
| 59 | 53, 58 | eqtrd 2229 |
. . . . . . . 8
|
| 60 | 59 | oveq1d 5937 |
. . . . . . 7
|
| 61 | 50, 60 | eqtrd 2229 |
. . . . . 6
|
| 62 | 61 | fveq2d 5562 |
. . . . 5
|
| 63 | 3lt4 9163 |
. . . . . 6
| |
| 64 | 2nn0 9266 |
. . . . . . . . . 10
| |
| 65 | 64 | a1i 9 |
. . . . . . . . 9
|
| 66 | 65, 9 | nn0mulcld 9307 |
. . . . . . . 8
|
| 67 | 66 | nn0zd 9446 |
. . . . . . 7
|
| 68 | 3nn0 9267 |
. . . . . . . 8
| |
| 69 | 68 | a1i 9 |
. . . . . . 7
|
| 70 | 4nn 9154 |
. . . . . . . 8
| |
| 71 | 70 | a1i 9 |
. . . . . . 7
|
| 72 | adddivflid 10382 |
. . . . . . 7
| |
| 73 | 67, 69, 71, 72 | syl3anc 1249 |
. . . . . 6
|
| 74 | 63, 73 | mpbii 148 |
. . . . 5
|
| 75 | 62, 74 | eqtrd 2229 |
. . . 4
|
| 76 | 47, 75 | oveq12d 5940 |
. . 3
|
| 77 | 66 | nn0cnd 9304 |
. . . 4
|
| 78 | 35, 14, 77 | addsubd 8358 |
. . 3
|
| 79 | 2t2e4 9145 |
. . . . . . . . . 10
| |
| 80 | 79 | eqcomi 2200 |
. . . . . . . . 9
|
| 81 | 80 | a1i 9 |
. . . . . . . 8
|
| 82 | 81 | oveq1d 5937 |
. . . . . . 7
|
| 83 | 23, 23, 24 | mulassd 8050 |
. . . . . . 7
|
| 84 | 82, 83 | eqtrd 2229 |
. . . . . 6
|
| 85 | 84 | oveq1d 5937 |
. . . . 5
|
| 86 | 2txmxeqx 9122 |
. . . . . 6
| |
| 87 | 77, 86 | syl 14 |
. . . . 5
|
| 88 | 85, 87 | eqtrd 2229 |
. . . 4
|
| 89 | 88 | oveq1d 5937 |
. . 3
|
| 90 | 76, 78, 89 | 3eqtrd 2233 |
. 2
|
| 91 | 6, 90 | sylan9eqr 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 |
| This theorem is referenced by: 2lgslem3b1 15339 |
| Copyright terms: Public domain | W3C validator |