| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgslem3b | Unicode version | ||
| Description: Lemma for 2lgslem3b1 15742. (Contributed by AV, 16-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgslem2.n |
|
| Ref | Expression |
|---|---|
| 2lgslem3b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2lgslem2.n |
. . 3
| |
| 2 | oveq1 5981 |
. . . . 5
| |
| 3 | 2 | oveq1d 5989 |
. . . 4
|
| 4 | fvoveq1 5997 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 5992 |
. . 3
|
| 6 | 1, 5 | eqtrid 2254 |
. 2
|
| 7 | 8nn0 9360 |
. . . . . . . . . . 11
| |
| 8 | 7 | a1i 9 |
. . . . . . . . . 10
|
| 9 | id 19 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | nn0mulcld 9395 |
. . . . . . . . 9
|
| 11 | 10 | nn0cnd 9392 |
. . . . . . . 8
|
| 12 | 3cn 9153 |
. . . . . . . . 9
| |
| 13 | 12 | a1i 9 |
. . . . . . . 8
|
| 14 | 1cnd 8130 |
. . . . . . . 8
| |
| 15 | 11, 13, 14 | addsubassd 8445 |
. . . . . . 7
|
| 16 | 4t2e8 9237 |
. . . . . . . . . . . 12
| |
| 17 | 16 | eqcomi 2213 |
. . . . . . . . . . 11
|
| 18 | 17 | a1i 9 |
. . . . . . . . . 10
|
| 19 | 18 | oveq1d 5989 |
. . . . . . . . 9
|
| 20 | 4cn 9156 |
. . . . . . . . . . 11
| |
| 21 | 20 | a1i 9 |
. . . . . . . . . 10
|
| 22 | 2cn 9149 |
. . . . . . . . . . 11
| |
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | nn0cn 9347 |
. . . . . . . . . 10
| |
| 25 | 21, 23, 24 | mul32d 8267 |
. . . . . . . . 9
|
| 26 | 19, 25 | eqtrd 2242 |
. . . . . . . 8
|
| 27 | 3m1e2 9198 |
. . . . . . . . 9
| |
| 28 | 27 | a1i 9 |
. . . . . . . 8
|
| 29 | 26, 28 | oveq12d 5992 |
. . . . . . 7
|
| 30 | 15, 29 | eqtrd 2242 |
. . . . . 6
|
| 31 | 30 | oveq1d 5989 |
. . . . 5
|
| 32 | 4nn0 9356 |
. . . . . . . . . 10
| |
| 33 | 32 | a1i 9 |
. . . . . . . . 9
|
| 34 | 33, 9 | nn0mulcld 9395 |
. . . . . . . 8
|
| 35 | 34 | nn0cnd 9392 |
. . . . . . 7
|
| 36 | 35, 23 | mulcld 8135 |
. . . . . 6
|
| 37 | 2rp 9822 |
. . . . . . . 8
| |
| 38 | 37 | a1i 9 |
. . . . . . 7
|
| 39 | 38 | rpap0d 9866 |
. . . . . 6
|
| 40 | 36, 23, 23, 39 | divdirapd 8944 |
. . . . 5
|
| 41 | 2ap0 9171 |
. . . . . . . 8
| |
| 42 | 41 | a1i 9 |
. . . . . . 7
|
| 43 | 35, 23, 42 | divcanap4d 8911 |
. . . . . 6
|
| 44 | 2div2e1 9211 |
. . . . . . 7
| |
| 45 | 44 | a1i 9 |
. . . . . 6
|
| 46 | 43, 45 | oveq12d 5992 |
. . . . 5
|
| 47 | 31, 40, 46 | 3eqtrd 2246 |
. . . 4
|
| 48 | 4ap0 9177 |
. . . . . . . . 9
| |
| 49 | 48 | a1i 9 |
. . . . . . . 8
|
| 50 | 11, 13, 21, 49 | divdirapd 8944 |
. . . . . . 7
|
| 51 | 8cn 9164 |
. . . . . . . . . . 11
| |
| 52 | 51 | a1i 9 |
. . . . . . . . . 10
|
| 53 | 52, 24, 21, 49 | div23apd 8943 |
. . . . . . . . 9
|
| 54 | 17 | oveq1i 5984 |
. . . . . . . . . . . 12
|
| 55 | 22, 20, 48 | divcanap3i 8873 |
. . . . . . . . . . . 12
|
| 56 | 54, 55 | eqtri 2230 |
. . . . . . . . . . 11
|
| 57 | 56 | a1i 9 |
. . . . . . . . . 10
|
| 58 | 57 | oveq1d 5989 |
. . . . . . . . 9
|
| 59 | 53, 58 | eqtrd 2242 |
. . . . . . . 8
|
| 60 | 59 | oveq1d 5989 |
. . . . . . 7
|
| 61 | 50, 60 | eqtrd 2242 |
. . . . . 6
|
| 62 | 61 | fveq2d 5607 |
. . . . 5
|
| 63 | 3lt4 9251 |
. . . . . 6
| |
| 64 | 2nn0 9354 |
. . . . . . . . . 10
| |
| 65 | 64 | a1i 9 |
. . . . . . . . 9
|
| 66 | 65, 9 | nn0mulcld 9395 |
. . . . . . . 8
|
| 67 | 66 | nn0zd 9535 |
. . . . . . 7
|
| 68 | 3nn0 9355 |
. . . . . . . 8
| |
| 69 | 68 | a1i 9 |
. . . . . . 7
|
| 70 | 4nn 9242 |
. . . . . . . 8
| |
| 71 | 70 | a1i 9 |
. . . . . . 7
|
| 72 | adddivflid 10479 |
. . . . . . 7
| |
| 73 | 67, 69, 71, 72 | syl3anc 1252 |
. . . . . 6
|
| 74 | 63, 73 | mpbii 148 |
. . . . 5
|
| 75 | 62, 74 | eqtrd 2242 |
. . . 4
|
| 76 | 47, 75 | oveq12d 5992 |
. . 3
|
| 77 | 66 | nn0cnd 9392 |
. . . 4
|
| 78 | 35, 14, 77 | addsubd 8446 |
. . 3
|
| 79 | 2t2e4 9233 |
. . . . . . . . . 10
| |
| 80 | 79 | eqcomi 2213 |
. . . . . . . . 9
|
| 81 | 80 | a1i 9 |
. . . . . . . 8
|
| 82 | 81 | oveq1d 5989 |
. . . . . . 7
|
| 83 | 23, 23, 24 | mulassd 8138 |
. . . . . . 7
|
| 84 | 82, 83 | eqtrd 2242 |
. . . . . 6
|
| 85 | 84 | oveq1d 5989 |
. . . . 5
|
| 86 | 2txmxeqx 9210 |
. . . . . 6
| |
| 87 | 77, 86 | syl 14 |
. . . . 5
|
| 88 | 85, 87 | eqtrd 2242 |
. . . 4
|
| 89 | 88 | oveq1d 5989 |
. . 3
|
| 90 | 76, 78, 89 | 3eqtrd 2246 |
. 2
|
| 91 | 6, 90 | sylan9eqr 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-n0 9338 df-z 9415 df-q 9783 df-rp 9818 df-fl 10457 |
| This theorem is referenced by: 2lgslem3b1 15742 |
| Copyright terms: Public domain | W3C validator |