ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3b Unicode version

Theorem 2lgslem3b 15419
Description: Lemma for 2lgslem3b1 15423. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3b  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )

Proof of Theorem 2lgslem3b
StepHypRef Expression
1 2lgslem2.n . . 3  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
2 oveq1 5932 . . . . 5  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( P  -  1 )  =  ( ( ( 8  x.  K )  +  3 )  - 
1 ) )
32oveq1d 5940 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( P  -  1 )  /  2 )  =  ( ( ( ( 8  x.  K
)  +  3 )  -  1 )  / 
2 ) )
4 fvoveq1 5948 . . . 4  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  ( |_ `  ( P  / 
4 ) )  =  ( |_ `  (
( ( 8  x.  K )  +  3 )  /  4 ) ) )
53, 4oveq12d 5943 . . 3  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  (
( ( P  - 
1 )  /  2
)  -  ( |_
`  ( P  / 
4 ) ) )  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
61, 5eqtrid 2241 . 2  |-  ( P  =  ( ( 8  x.  K )  +  3 )  ->  N  =  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K
)  +  3 )  /  4 ) ) ) )
7 8nn0 9289 . . . . . . . . . . 11  |-  8  e.  NN0
87a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e. 
NN0 )
9 id 19 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e. 
NN0 )
108, 9nn0mulcld 9324 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e. 
NN0 )
1110nn0cnd 9321 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  e.  CC )
12 3cn 9082 . . . . . . . . 9  |-  3  e.  CC
1312a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  3  e.  CC )
14 1cnd 8059 . . . . . . . 8  |-  ( K  e.  NN0  ->  1  e.  CC )
1511, 13, 14addsubassd 8374 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( 8  x.  K )  +  ( 3  -  1 ) ) )
16 4t2e8 9166 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
1716eqcomi 2200 . . . . . . . . . . 11  |-  8  =  ( 4  x.  2 )
1817a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  =  ( 4  x.  2 ) )
1918oveq1d 5940 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  2 )  x.  K
) )
20 4cn 9085 . . . . . . . . . . 11  |-  4  e.  CC
2120a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  4  e.  CC )
22 2cn 9078 . . . . . . . . . . 11  |-  2  e.  CC
2322a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  2  e.  CC )
24 nn0cn 9276 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  K  e.  CC )
2521, 23, 24mul32d 8196 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 4  x.  2 )  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
2619, 25eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 8  x.  K )  =  ( ( 4  x.  K )  x.  2 ) )
27 3m1e2 9127 . . . . . . . . 9  |-  ( 3  -  1 )  =  2
2827a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 3  -  1 )  =  2 )
2926, 28oveq12d 5943 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  +  ( 3  -  1 ) )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3015, 29eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  -  1 )  =  ( ( ( 4  x.  K )  x.  2 )  +  2 ) )
3130oveq1d 5940 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2
) )
32 4nn0 9285 . . . . . . . . . 10  |-  4  e.  NN0
3332a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  4  e. 
NN0 )
3433, 9nn0mulcld 9324 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e. 
NN0 )
3534nn0cnd 9321 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  e.  CC )
3635, 23mulcld 8064 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  x.  2 )  e.  CC )
37 2rp 9750 . . . . . . . 8  |-  2  e.  RR+
3837a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2  e.  RR+ )
3938rpap0d 9794 . . . . . 6  |-  ( K  e.  NN0  ->  2 #  0 )
4036, 23, 23, 39divdirapd 8873 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  +  2 )  /  2 )  =  ( ( ( ( 4  x.  K )  x.  2 )  / 
2 )  +  ( 2  /  2 ) ) )
41 2ap0 9100 . . . . . . . 8  |-  2 #  0
4241a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  2 #  0 )
4335, 23, 42divcanap4d 8840 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  x.  2 )  /  2 )  =  ( 4  x.  K
) )
44 2div2e1 9140 . . . . . . 7  |-  ( 2  /  2 )  =  1
4544a1i 9 . . . . . 6  |-  ( K  e.  NN0  ->  ( 2  /  2 )  =  1 )
4643, 45oveq12d 5943 . . . . 5  |-  ( K  e.  NN0  ->  ( ( ( ( 4  x.  K )  x.  2 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( 4  x.  K )  +  1 ) )
4731, 40, 463eqtrd 2233 . . . 4  |-  ( K  e.  NN0  ->  ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  =  ( ( 4  x.  K )  +  1 ) )
48 4ap0 9106 . . . . . . . . 9  |-  4 #  0
4948a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4 #  0 )
5011, 13, 21, 49divdirapd 8873 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( ( 8  x.  K )  / 
4 )  +  ( 3  /  4 ) ) )
51 8cn 9093 . . . . . . . . . . 11  |-  8  e.  CC
5251a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  8  e.  CC )
5352, 24, 21, 49div23apd 8872 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( ( 8  / 
4 )  x.  K
) )
5417oveq1i 5935 . . . . . . . . . . . 12  |-  ( 8  /  4 )  =  ( ( 4  x.  2 )  /  4
)
5522, 20, 48divcanap3i 8802 . . . . . . . . . . . 12  |-  ( ( 4  x.  2 )  /  4 )  =  2
5654, 55eqtri 2217 . . . . . . . . . . 11  |-  ( 8  /  4 )  =  2
5756a1i 9 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( 8  /  4 )  =  2 )
5857oveq1d 5940 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( ( 8  /  4 )  x.  K )  =  ( 2  x.  K
) )
5953, 58eqtrd 2229 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( ( 8  x.  K )  /  4 )  =  ( 2  x.  K
) )
6059oveq1d 5940 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  /  4 )  +  ( 3  / 
4 ) )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6150, 60eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( ( ( 8  x.  K
)  +  3 )  /  4 )  =  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )
6261fveq2d 5565 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( |_ `  (
( 2  x.  K
)  +  ( 3  /  4 ) ) ) )
63 3lt4 9180 . . . . . 6  |-  3  <  4
64 2nn0 9283 . . . . . . . . . 10  |-  2  e.  NN0
6564a1i 9 . . . . . . . . 9  |-  ( K  e.  NN0  ->  2  e. 
NN0 )
6665, 9nn0mulcld 9324 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e. 
NN0 )
6766nn0zd 9463 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  ZZ )
68 3nn0 9284 . . . . . . . 8  |-  3  e.  NN0
6968a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  3  e. 
NN0 )
70 4nn 9171 . . . . . . . 8  |-  4  e.  NN
7170a1i 9 . . . . . . 7  |-  ( K  e.  NN0  ->  4  e.  NN )
72 adddivflid 10399 . . . . . . 7  |-  ( ( ( 2  x.  K
)  e.  ZZ  /\  3  e.  NN0  /\  4  e.  NN )  ->  (
3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7367, 69, 71, 72syl3anc 1249 . . . . . 6  |-  ( K  e.  NN0  ->  ( 3  <  4  <->  ( |_ `  ( ( 2  x.  K )  +  ( 3  /  4 ) ) )  =  ( 2  x.  K ) ) )
7463, 73mpbii 148 . . . . 5  |-  ( K  e.  NN0  ->  ( |_
`  ( ( 2  x.  K )  +  ( 3  /  4
) ) )  =  ( 2  x.  K
) )
7562, 74eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( |_
`  ( ( ( 8  x.  K )  +  3 )  / 
4 ) )  =  ( 2  x.  K
) )
7647, 75oveq12d 5943 . . 3  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( ( 4  x.  K )  +  1 )  -  (
2  x.  K ) ) )
7766nn0cnd 9321 . . . 4  |-  ( K  e.  NN0  ->  ( 2  x.  K )  e.  CC )
7835, 14, 77addsubd 8375 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  +  1 )  -  ( 2  x.  K ) )  =  ( ( ( 4  x.  K )  -  ( 2  x.  K
) )  +  1 ) )
79 2t2e4 9162 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8079eqcomi 2200 . . . . . . . . 9  |-  4  =  ( 2  x.  2 )
8180a1i 9 . . . . . . . 8  |-  ( K  e.  NN0  ->  4  =  ( 2  x.  2 ) )
8281oveq1d 5940 . . . . . . 7  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( ( 2  x.  2 )  x.  K
) )
8323, 23, 24mulassd 8067 . . . . . . 7  |-  ( K  e.  NN0  ->  ( ( 2  x.  2 )  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8482, 83eqtrd 2229 . . . . . 6  |-  ( K  e.  NN0  ->  ( 4  x.  K )  =  ( 2  x.  (
2  x.  K ) ) )
8584oveq1d 5940 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( ( 2  x.  ( 2  x.  K
) )  -  (
2  x.  K ) ) )
86 2txmxeqx 9139 . . . . . 6  |-  ( ( 2  x.  K )  e.  CC  ->  (
( 2  x.  (
2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K ) )
8777, 86syl 14 . . . . 5  |-  ( K  e.  NN0  ->  ( ( 2  x.  ( 2  x.  K ) )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8885, 87eqtrd 2229 . . . 4  |-  ( K  e.  NN0  ->  ( ( 4  x.  K )  -  ( 2  x.  K ) )  =  ( 2  x.  K
) )
8988oveq1d 5940 . . 3  |-  ( K  e.  NN0  ->  ( ( ( 4  x.  K
)  -  ( 2  x.  K ) )  +  1 )  =  ( ( 2  x.  K )  +  1 ) )
9076, 78, 893eqtrd 2233 . 2  |-  ( K  e.  NN0  ->  ( ( ( ( ( 8  x.  K )  +  3 )  -  1 )  /  2 )  -  ( |_ `  ( ( ( 8  x.  K )  +  3 )  /  4
) ) )  =  ( ( 2  x.  K )  +  1 ) )
916, 90sylan9eqr 2251 1  |-  ( ( K  e.  NN0  /\  P  =  ( (
8  x.  K )  +  3 ) )  ->  N  =  ( ( 2  x.  K
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   NNcn 9007   2c2 9058   3c3 9059   4c4 9060   8c8 9064   NN0cn0 9266   ZZcz 9343   RR+crp 9745   |_cfl 10375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377
This theorem is referenced by:  2lgslem3b1  15423
  Copyright terms: Public domain W3C validator