ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4lem1div2uz2 Unicode version

Theorem fldiv4lem1div2uz2 10466
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
fldiv4lem1div2uz2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  <_  (
( N  -  1 )  /  2 ) )

Proof of Theorem fldiv4lem1div2uz2
StepHypRef Expression
1 eluzelz 9672 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
2 4nn 9215 . . . . 5  |-  4  e.  NN
3 znq 9760 . . . . 5  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
41, 2, 3sylancl 413 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  4 )  e.  QQ )
54flqcld 10437 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  e.  ZZ )
65zred 9510 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  e.  RR )
7 eluzelre 9673 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
82a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  4  e.  NN )
97, 8nndivred 9101 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  4 )  e.  RR )
10 peano2rem 8354 . . . 4  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
117, 10syl 14 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  RR )
1211rehalfcld 9299 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( ( N  -  1 )  /  2 )  e.  RR )
13 flqle 10438 . . 3  |-  ( ( N  /  4 )  e.  QQ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
144, 13syl 14 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  <_  ( N  /  4 ) )
15 1red 8102 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
16 zre 9391 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR )
17 rehalfcl 9279 . . . . 5  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  RR )
181, 16, 173syl 17 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  2 )  e.  RR )
19 2rp 9795 . . . . . 6  |-  2  e.  RR+
20 eluzle 9675 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
21 divge1 9860 . . . . . 6  |-  ( ( 2  e.  RR+  /\  N  e.  RR  /\  2  <_  N )  ->  1  <_  ( N  /  2
) )
2219, 7, 20, 21mp3an2i 1355 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <_  ( N  /  2 ) )
23 eluzelcn 9674 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  CC )
24 subhalfhalf 9287 . . . . . 6  |-  ( N  e.  CC  ->  ( N  -  ( N  /  2 ) )  =  ( N  / 
2 ) )
2523, 24syl 14 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  ( N  / 
2 ) )  =  ( N  /  2
) )
2622, 25breqtrrd 4078 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <_  ( N  -  ( N  /  2 ) ) )
2715, 7, 18, 26lesubd 8637 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  2 )  <_ 
( N  -  1 ) )
28 2t2e4 9206 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
2928eqcomi 2210 . . . . . . . 8  |-  4  =  ( 2  x.  2 )
3029a1i 9 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  4  =  ( 2  x.  2 ) )
3130oveq2d 5972 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  4 )  =  ( N  /  (
2  x.  2 ) ) )
32 2cnd 9124 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  CC )
3319a1i 9 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  e.  RR+ )
3433rpap0d 9839 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  2
)  ->  2 #  0
)
3523, 32, 32, 34, 34divdivap1d 8910 . . . . . 6  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( ( N  /  2 )  / 
2 )  =  ( N  /  ( 2  x.  2 ) ) )
3631, 35eqtr4d 2242 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  4 )  =  ( ( N  / 
2 )  /  2
) )
3736breq1d 4060 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( ( N  /  4 )  <_ 
( ( N  - 
1 )  /  2
)  <->  ( ( N  /  2 )  / 
2 )  <_  (
( N  -  1 )  /  2 ) ) )
3818, 11, 33lediv1d 9880 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( ( N  /  2 )  <_ 
( N  -  1 )  <->  ( ( N  /  2 )  / 
2 )  <_  (
( N  -  1 )  /  2 ) ) )
3937, 38bitr4d 191 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( ( N  /  4 )  <_ 
( ( N  - 
1 )  /  2
)  <->  ( N  / 
2 )  <_  ( N  -  1 ) ) )
4027, 39mpbird 167 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  /  4 )  <_ 
( ( N  - 
1 )  /  2
) )
416, 9, 12, 14, 40letrd 8211 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( N  /  4
) )  <_  (
( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   class class class wbr 4050   ` cfv 5279  (class class class)co 5956   CCcc 7938   RRcr 7939   1c1 7941    x. cmul 7945    <_ cle 8123    - cmin 8258    / cdiv 8760   NNcn 9051   2c2 9102   4c4 9104   ZZcz 9387   ZZ>=cuz 9663   QQcq 9755   RR+crp 9790   |_cfl 10428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-po 4350  df-iso 4351  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-fl 10430
This theorem is referenced by:  fldiv4lem1div2  10467  gausslemma2dlem4  15611
  Copyright terms: Public domain W3C validator