ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apcxp2 Unicode version

Theorem apcxp2 13354
Description: Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
Assertion
Ref Expression
apcxp2  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C 
<->  ( A  ^c  B ) #  ( A  ^c  C )
) )

Proof of Theorem apcxp2
StepHypRef Expression
1 simprl 521 . . . 4  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  B  e.  RR )
2 simpll 519 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  A  e.  RR+ )
32relogcld 13299 . . . 4  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( log `  A )  e.  RR )
41, 3remulcld 7911 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B  x.  ( log `  A
) )  e.  RR )
5 simprr 522 . . . 4  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  C  e.  RR )
65, 3remulcld 7911 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( C  x.  ( log `  A
) )  e.  RR )
7 reapef 13195 . . 3  |-  ( ( ( B  x.  ( log `  A ) )  e.  RR  /\  ( C  x.  ( log `  A ) )  e.  RR )  ->  (
( B  x.  ( log `  A ) ) #  ( C  x.  ( log `  A ) )  <-> 
( exp `  ( B  x.  ( log `  A ) ) ) #  ( exp `  ( C  x.  ( log `  A ) ) ) ) )
84, 6, 7syl2anc 409 . 2  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( ( B  x.  ( log `  A ) ) #  ( C  x.  ( log `  A ) )  <->  ( exp `  ( B  x.  ( log `  A ) ) ) #  ( exp `  ( C  x.  ( log `  A ) ) ) ) )
91recnd 7909 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  B  e.  CC )
105recnd 7909 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  C  e.  CC )
113recnd 7909 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( log `  A )  e.  CC )
12 simplr 520 . . . 4  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  A #  1
)
132, 12logrpap0d 13295 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( log `  A ) #  0 )
14 apmul1 8666 . . 3  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  (
( log `  A
)  e.  CC  /\  ( log `  A ) #  0 ) )  -> 
( B #  C  <->  ( B  x.  ( log `  A
) ) #  ( C  x.  ( log `  A
) ) ) )
159, 10, 11, 13, 14syl112anc 1224 . 2  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C 
<->  ( B  x.  ( log `  A ) ) #  ( C  x.  ( log `  A ) ) ) )
16 rpcxpef 13311 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
172, 9, 16syl2anc 409 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
18 rpcxpef 13311 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
192, 10, 18syl2anc 409 . . 3  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
2017, 19breq12d 3980 . 2  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( ( A  ^c  B ) #  ( A  ^c  C )  <->  ( exp `  ( B  x.  ( log `  A ) ) ) #  ( exp `  ( C  x.  ( log `  A ) ) ) ) )
218, 15, 203bitr4d 219 1  |-  ( ( ( A  e.  RR+  /\  A #  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C 
<->  ( A  ^c  B ) #  ( A  ^c  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   CCcc 7733   RRcr 7734   0cc0 7735   1c1 7736    x. cmul 7740   # cap 8461   RR+crp 9567   expce 11551   logclog 13273    ^c ccxp 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855  ax-pre-suploc 7856  ax-addf 7857  ax-mulf 7858
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-disj 3945  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-of 6035  df-1st 6091  df-2nd 6092  df-recs 6255  df-irdg 6320  df-frec 6341  df-1o 6366  df-oadd 6370  df-er 6483  df-map 6598  df-pm 6599  df-en 6689  df-dom 6690  df-fin 6691  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-xneg 9686  df-xadd 9687  df-ioo 9803  df-ico 9805  df-icc 9806  df-fz 9920  df-fzo 10052  df-seqfrec 10355  df-exp 10429  df-fac 10612  df-bc 10634  df-ihash 10662  df-shft 10727  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-clim 11188  df-sumdc 11263  df-ef 11557  df-e 11558  df-rest 12449  df-topgen 12468  df-psmet 12483  df-xmet 12484  df-met 12485  df-bl 12486  df-mopn 12487  df-top 12492  df-topon 12505  df-bases 12537  df-ntr 12592  df-cn 12684  df-cnp 12685  df-tx 12749  df-cncf 13054  df-limced 13121  df-dvap 13122  df-relog 13275  df-rpcxp 13276
This theorem is referenced by:  logbgcd1irraplemap  13383
  Copyright terms: Public domain W3C validator