ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddrcl Unicode version

Theorem axaddrcl 7400
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7440 be used later. Instead, in most cases use readdcl 7466. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axaddrcl  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )

Proof of Theorem axaddrcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7364 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 7364 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 oveq1 5659 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  +  <. y ,  0R >. )  =  ( A  +  <. y ,  0R >. ) )
43eleq1d 2156 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  + 
<. y ,  0R >. )  e.  RR  <->  ( A  +  <. y ,  0R >. )  e.  RR ) )
5 oveq2 5660 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( A  +  <. y ,  0R >. )  =  ( A  +  B ) )
65eleq1d 2156 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  +  <. y ,  0R >. )  e.  RR  <->  ( A  +  B )  e.  RR ) )
7 addresr 7372 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  +  <. y ,  0R >. )  =  <. (
x  +R  y ) ,  0R >. )
8 addclsr 7297 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( x  +R  y
)  e.  R. )
9 opelreal 7363 . . . 4  |-  ( <.
( x  +R  y
) ,  0R >.  e.  RR  <->  ( x  +R  y )  e.  R. )
108, 9sylibr 132 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  -> 
<. ( x  +R  y
) ,  0R >.  e.  RR )
117, 10eqeltrd 2164 . 2  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  +  <. y ,  0R >. )  e.  RR )
121, 2, 4, 6, 112gencl 2652 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   <.cop 3449  (class class class)co 5652   R.cnr 6854   0Rc0r 6855    +R cplr 6858   RRcr 7347    + caddc 7351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-2o 6182  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-pli 6862  df-mi 6863  df-lti 6864  df-plpq 6901  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-plqqs 6906  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-enq0 6981  df-nq0 6982  df-0nq0 6983  df-plq0 6984  df-mq0 6985  df-inp 7023  df-i1p 7024  df-iplp 7025  df-enr 7270  df-nr 7271  df-plr 7272  df-0r 7275  df-c 7354  df-r 7358  df-add 7359
This theorem is referenced by:  peano5nnnn  7425
  Copyright terms: Public domain W3C validator