![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climshft | GIF version |
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climshft | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5601 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀)) | |
2 | 1 | breq1d 3824 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴)) |
3 | breq1 3817 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
4 | 2, 3 | bibi12d 233 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
5 | 4 | imbi2d 228 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)))) |
6 | znegcl 8691 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℤ) | |
7 | vex 2617 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
8 | zcn 8665 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
9 | ovshftex 10095 | . . . . . . 7 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ℂ) → (𝑓 shift 𝑀) ∈ V) | |
10 | 7, 8, 9 | sylancr 405 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑓 shift 𝑀) ∈ V) |
11 | climshftlemg 10529 | . . . . . 6 ⊢ ((-𝑀 ∈ ℤ ∧ (𝑓 shift 𝑀) ∈ V) → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) | |
12 | 6, 10, 11 | syl2anc 403 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) |
13 | eqid 2085 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
14 | 8 | negcld 7701 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℂ) |
15 | ovshftex 10095 | . . . . . . 7 ⊢ (((𝑓 shift 𝑀) ∈ V ∧ -𝑀 ∈ ℂ) → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) | |
16 | 10, 14, 15 | syl2anc 403 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) |
17 | 7 | a1i 9 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑓 ∈ V) |
18 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
19 | eluzelcn 8939 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℂ) | |
20 | 7 | shftcan1 10110 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
21 | 8, 19, 20 | syl2an 283 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
22 | 13, 16, 17, 18, 21 | climeq 10526 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
23 | 12, 22 | sylibd 147 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → 𝑓 ⇝ 𝐴)) |
24 | climshftlemg 10529 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑓 ∈ V) → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) | |
25 | 7, 24 | mpan2 416 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) |
26 | 23, 25 | impbid 127 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
27 | 5, 26 | vtoclg 2671 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
28 | 27 | impcom 123 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1287 ∈ wcel 1436 Vcvv 2614 class class class wbr 3814 ‘cfv 4972 (class class class)co 5594 ℂcc 7269 -cneg 7575 ℤcz 8660 ℤ≥cuz 8928 shift cshi 10090 ⇝ cli 10505 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-coll 3922 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-cnex 7357 ax-resscn 7358 ax-1cn 7359 ax-1re 7360 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-addcom 7366 ax-addass 7368 ax-distr 7370 ax-i2m1 7371 ax-0lt1 7372 ax-0id 7374 ax-rnegex 7375 ax-cnre 7377 ax-pre-ltirr 7378 ax-pre-ltwlin 7379 ax-pre-lttrn 7380 ax-pre-apti 7381 ax-pre-ltadd 7382 |
This theorem depends on definitions: df-bi 115 df-dc 779 df-3or 923 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-nel 2347 df-ral 2360 df-rex 2361 df-reu 2362 df-rab 2364 df-v 2616 df-sbc 2829 df-csb 2922 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-if 3377 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-int 3666 df-iun 3709 df-br 3815 df-opab 3869 df-mpt 3870 df-id 4087 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-f1 4977 df-fo 4978 df-f1o 4979 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-pnf 7445 df-mnf 7446 df-xr 7447 df-ltxr 7448 df-le 7449 df-sub 7576 df-neg 7577 df-inn 8335 df-n0 8584 df-z 8661 df-uz 8929 df-shft 10091 df-clim 10506 |
This theorem is referenced by: climshft2 10533 |
Copyright terms: Public domain | W3C validator |