![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climshft | GIF version |
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climshft | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5926 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀)) | |
2 | 1 | breq1d 4040 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴)) |
3 | breq1 4033 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
4 | 2, 3 | bibi12d 235 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
5 | 4 | imbi2d 230 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)))) |
6 | znegcl 9351 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℤ) | |
7 | vex 2763 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
8 | zcn 9325 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
9 | ovshftex 10966 | . . . . . . 7 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ℂ) → (𝑓 shift 𝑀) ∈ V) | |
10 | 7, 8, 9 | sylancr 414 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑓 shift 𝑀) ∈ V) |
11 | climshftlemg 11448 | . . . . . 6 ⊢ ((-𝑀 ∈ ℤ ∧ (𝑓 shift 𝑀) ∈ V) → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) | |
12 | 6, 10, 11 | syl2anc 411 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) |
13 | eqid 2193 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
14 | 8 | negcld 8319 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℂ) |
15 | ovshftex 10966 | . . . . . . 7 ⊢ (((𝑓 shift 𝑀) ∈ V ∧ -𝑀 ∈ ℂ) → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) | |
16 | 10, 14, 15 | syl2anc 411 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) |
17 | 7 | a1i 9 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑓 ∈ V) |
18 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
19 | eluzelcn 9606 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℂ) | |
20 | 7 | shftcan1 10981 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
21 | 8, 19, 20 | syl2an 289 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
22 | 13, 16, 17, 18, 21 | climeq 11445 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
23 | 12, 22 | sylibd 149 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → 𝑓 ⇝ 𝐴)) |
24 | climshftlemg 11448 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑓 ∈ V) → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) | |
25 | 7, 24 | mpan2 425 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) |
26 | 23, 25 | impbid 129 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
27 | 5, 26 | vtoclg 2821 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
28 | 27 | impcom 125 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 -cneg 8193 ℤcz 9320 ℤ≥cuz 9595 shift cshi 10961 ⇝ cli 11424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-shft 10962 df-clim 11425 |
This theorem is referenced by: climshft2 11452 iser3shft 11492 eftlub 11836 |
Copyright terms: Public domain | W3C validator |