![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climshft | GIF version |
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climshft | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5713 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀)) | |
2 | 1 | breq1d 3885 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴)) |
3 | breq1 3878 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | |
4 | 2, 3 | bibi12d 234 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
5 | 4 | imbi2d 229 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)))) |
6 | znegcl 8937 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℤ) | |
7 | vex 2644 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
8 | zcn 8911 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
9 | ovshftex 10432 | . . . . . . 7 ⊢ ((𝑓 ∈ V ∧ 𝑀 ∈ ℂ) → (𝑓 shift 𝑀) ∈ V) | |
10 | 7, 8, 9 | sylancr 408 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑓 shift 𝑀) ∈ V) |
11 | climshftlemg 10910 | . . . . . 6 ⊢ ((-𝑀 ∈ ℤ ∧ (𝑓 shift 𝑀) ∈ V) → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) | |
12 | 6, 10, 11 | syl2anc 406 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴)) |
13 | eqid 2100 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
14 | 8 | negcld 7931 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → -𝑀 ∈ ℂ) |
15 | ovshftex 10432 | . . . . . . 7 ⊢ (((𝑓 shift 𝑀) ∈ V ∧ -𝑀 ∈ ℂ) → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) | |
16 | 10, 14, 15 | syl2anc 406 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V) |
17 | 7 | a1i 9 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑓 ∈ V) |
18 | id 19 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
19 | eluzelcn 9187 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℂ) | |
20 | 7 | shftcan1 10447 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
21 | 8, 19, 20 | syl2an 285 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓‘𝑘)) |
22 | 13, 16, 17, 18, 21 | climeq 10907 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
23 | 12, 22 | sylibd 148 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → 𝑓 ⇝ 𝐴)) |
24 | climshftlemg 10910 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑓 ∈ V) → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) | |
25 | 7, 24 | mpan2 419 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑓 ⇝ 𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴)) |
26 | 23, 25 | impbid 128 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ 𝑓 ⇝ 𝐴)) |
27 | 5, 26 | vtoclg 2701 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴))) |
28 | 27 | impcom 124 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1299 ∈ wcel 1448 Vcvv 2641 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 ℂcc 7498 -cneg 7805 ℤcz 8906 ℤ≥cuz 9176 shift cshi 10427 ⇝ cli 10886 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 df-shft 10428 df-clim 10887 |
This theorem is referenced by: climshft2 10914 iser3shft 10954 eftlub 11194 |
Copyright terms: Public domain | W3C validator |