ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft GIF version

Theorem climshft 11314
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climshft ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climshft
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5884 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀))
21breq1d 4015 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴))
3 breq1 4008 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
42, 3bibi12d 235 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
54imbi2d 230 . . 3 (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))))
6 znegcl 9286 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
7 vex 2742 . . . . . . 7 𝑓 ∈ V
8 zcn 9260 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
9 ovshftex 10830 . . . . . . 7 ((𝑓 ∈ V ∧ 𝑀 ∈ ℂ) → (𝑓 shift 𝑀) ∈ V)
107, 8, 9sylancr 414 . . . . . 6 (𝑀 ∈ ℤ → (𝑓 shift 𝑀) ∈ V)
11 climshftlemg 11312 . . . . . 6 ((-𝑀 ∈ ℤ ∧ (𝑓 shift 𝑀) ∈ V) → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
126, 10, 11syl2anc 411 . . . . 5 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
13 eqid 2177 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
148negcld 8257 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℂ)
15 ovshftex 10830 . . . . . . 7 (((𝑓 shift 𝑀) ∈ V ∧ -𝑀 ∈ ℂ) → ((𝑓 shift 𝑀) shift -𝑀) ∈ V)
1610, 14, 15syl2anc 411 . . . . . 6 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V)
177a1i 9 . . . . . 6 (𝑀 ∈ ℤ → 𝑓 ∈ V)
18 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
19 eluzelcn 9541 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
207shftcan1 10845 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
218, 19, 20syl2an 289 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
2213, 16, 17, 18, 21climeq 11309 . . . . 5 (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴𝑓𝐴))
2312, 22sylibd 149 . . . 4 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
24 climshftlemg 11312 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑓 ∈ V) → (𝑓𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴))
257, 24mpan2 425 . . . 4 (𝑀 ∈ ℤ → (𝑓𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴))
2623, 25impbid 129 . . 3 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
275, 26vtoclg 2799 . 2 (𝐹𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
2827impcom 125 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739   class class class wbr 4005  cfv 5218  (class class class)co 5877  cc 7811  -cneg 8131  cz 9255  cuz 9530   shift cshi 10825  cli 11288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-shft 10826  df-clim 11289
This theorem is referenced by:  climshft2  11316  iser3shft  11356  eftlub  11700
  Copyright terms: Public domain W3C validator