ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft GIF version

Theorem climshft 11280
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climshft ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))

Proof of Theorem climshft
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5872 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift 𝑀) = (𝐹 shift 𝑀))
21breq1d 4008 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift 𝑀) ⇝ 𝐴 ↔ (𝐹 shift 𝑀) ⇝ 𝐴))
3 breq1 4001 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
42, 3bibi12d 235 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴) ↔ ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
54imbi2d 230 . . 3 (𝑓 = 𝐹 → ((𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴)) ↔ (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))))
6 znegcl 9257 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
7 vex 2738 . . . . . . 7 𝑓 ∈ V
8 zcn 9231 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
9 ovshftex 10796 . . . . . . 7 ((𝑓 ∈ V ∧ 𝑀 ∈ ℂ) → (𝑓 shift 𝑀) ∈ V)
107, 8, 9sylancr 414 . . . . . 6 (𝑀 ∈ ℤ → (𝑓 shift 𝑀) ∈ V)
11 climshftlemg 11278 . . . . . 6 ((-𝑀 ∈ ℤ ∧ (𝑓 shift 𝑀) ∈ V) → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
126, 10, 11syl2anc 411 . . . . 5 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴 → ((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴))
13 eqid 2175 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
148negcld 8229 . . . . . . 7 (𝑀 ∈ ℤ → -𝑀 ∈ ℂ)
15 ovshftex 10796 . . . . . . 7 (((𝑓 shift 𝑀) ∈ V ∧ -𝑀 ∈ ℂ) → ((𝑓 shift 𝑀) shift -𝑀) ∈ V)
1610, 14, 15syl2anc 411 . . . . . 6 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) shift -𝑀) ∈ V)
177a1i 9 . . . . . 6 (𝑀 ∈ ℤ → 𝑓 ∈ V)
18 id 19 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
19 eluzelcn 9512 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
207shftcan1 10811 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
218, 19, 20syl2an 289 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑀)) → (((𝑓 shift 𝑀) shift -𝑀)‘𝑘) = (𝑓𝑘))
2213, 16, 17, 18, 21climeq 11275 . . . . 5 (𝑀 ∈ ℤ → (((𝑓 shift 𝑀) shift -𝑀) ⇝ 𝐴𝑓𝐴))
2312, 22sylibd 149 . . . 4 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
24 climshftlemg 11278 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑓 ∈ V) → (𝑓𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴))
257, 24mpan2 425 . . . 4 (𝑀 ∈ ℤ → (𝑓𝐴 → (𝑓 shift 𝑀) ⇝ 𝐴))
2623, 25impbid 129 . . 3 (𝑀 ∈ ℤ → ((𝑓 shift 𝑀) ⇝ 𝐴𝑓𝐴))
275, 26vtoclg 2795 . 2 (𝐹𝑉 → (𝑀 ∈ ℤ → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴)))
2827impcom 125 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  Vcvv 2735   class class class wbr 3998  cfv 5208  (class class class)co 5865  cc 7784  -cneg 8103  cz 9226  cuz 9501   shift cshi 10791  cli 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-shft 10792  df-clim 11255
This theorem is referenced by:  climshft2  11282  iser3shft  11322  eftlub  11666
  Copyright terms: Public domain W3C validator