![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmetdval | GIF version |
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
cnmetdval.1 | ⊢ 𝐷 = (abs ∘ − ) |
Ref | Expression |
---|---|
cnmetdval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subf 8223 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
2 | opelxpi 4692 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) | |
3 | fvco3 5629 | . . 3 ⊢ (( − :(ℂ × ℂ)⟶ℂ ∧ 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) | |
4 | 1, 2, 3 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) |
5 | df-ov 5922 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
6 | cnmetdval.1 | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
7 | 6 | fveq1i 5556 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
8 | 5, 7 | eqtri 2214 | . 2 ⊢ (𝐴𝐷𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
9 | df-ov 5922 | . . 3 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
10 | 9 | fveq2i 5558 | . 2 ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘( − ‘〈𝐴, 𝐵〉)) |
11 | 4, 8, 10 | 3eqtr4g 2251 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3622 × cxp 4658 ∘ ccom 4664 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 − cmin 8192 abscabs 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-sub 8194 |
This theorem is referenced by: cnmet 14709 cnbl0 14713 cnblcld 14714 remetdval 14726 addcncntoplem 14740 divcnap 14744 cncfmet 14771 cnopnap 14790 limcimolemlt 14843 cnplimcim 14846 cnplimclemr 14848 limccnpcntop 14854 limccnp2lem 14855 |
Copyright terms: Public domain | W3C validator |