| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmetdval | GIF version | ||
| Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| cnmetdval.1 | ⊢ 𝐷 = (abs ∘ − ) |
| Ref | Expression |
|---|---|
| cnmetdval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subf 8228 | . . 3 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 2 | opelxpi 4695 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) | |
| 3 | fvco3 5632 | . . 3 ⊢ (( − :(ℂ × ℂ)⟶ℂ ∧ 〈𝐴, 𝐵〉 ∈ (ℂ × ℂ)) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) | |
| 4 | 1, 2, 3 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘( − ‘〈𝐴, 𝐵〉))) |
| 5 | df-ov 5925 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 6 | cnmetdval.1 | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
| 7 | 6 | fveq1i 5559 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 8 | 5, 7 | eqtri 2217 | . 2 ⊢ (𝐴𝐷𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) |
| 9 | df-ov 5925 | . . 3 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
| 10 | 9 | fveq2i 5561 | . 2 ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘( − ‘〈𝐴, 𝐵〉)) |
| 11 | 4, 8, 10 | 3eqtr4g 2254 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 〈cop 3625 × cxp 4661 ∘ ccom 4667 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 − cmin 8197 abscabs 11162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-sub 8199 |
| This theorem is referenced by: cnmet 14766 cnbl0 14770 cnblcld 14771 remetdval 14783 addcncntoplem 14797 divcnap 14801 cncfmet 14828 cnopnap 14847 limcimolemlt 14900 cnplimcim 14903 cnplimclemr 14905 limccnpcntop 14911 limccnp2lem 14912 |
| Copyright terms: Public domain | W3C validator |