ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmetdval GIF version

Theorem cnmetdval 12940
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypothesis
Ref Expression
cnmetdval.1 𝐷 = (abs ∘ − )
Assertion
Ref Expression
cnmetdval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem cnmetdval
StepHypRef Expression
1 subf 8077 . . 3 − :(ℂ × ℂ)⟶ℂ
2 opelxpi 4618 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ⟨𝐴, 𝐵⟩ ∈ (ℂ × ℂ))
3 fvco3 5539 . . 3 (( − :(ℂ × ℂ)⟶ℂ ∧ ⟨𝐴, 𝐵⟩ ∈ (ℂ × ℂ)) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘( − ‘⟨𝐴, 𝐵⟩)))
41, 2, 3sylancr 411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘( − ‘⟨𝐴, 𝐵⟩)))
5 df-ov 5827 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
6 cnmetdval.1 . . . 4 𝐷 = (abs ∘ − )
76fveq1i 5469 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
85, 7eqtri 2178 . 2 (𝐴𝐷𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
9 df-ov 5827 . . 3 (𝐴𝐵) = ( − ‘⟨𝐴, 𝐵⟩)
109fveq2i 5471 . 2 (abs‘(𝐴𝐵)) = (abs‘( − ‘⟨𝐴, 𝐵⟩))
114, 8, 103eqtr4g 2215 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  cop 3563   × cxp 4584  ccom 4590  wf 5166  cfv 5170  (class class class)co 5824  cc 7730  cmin 8046  abscabs 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-resscn 7824  ax-1cn 7825  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-sub 8048
This theorem is referenced by:  cnmet  12941  cnbl0  12945  cnblcld  12946  remetdval  12950  addcncntoplem  12962  divcnap  12966  cncfmet  12990  cnopnap  13005  limcimolemlt  13044  cnplimcim  13047  cnplimclemr  13049  limccnpcntop  13055  limccnp2lem  13056
  Copyright terms: Public domain W3C validator