![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmetdval | GIF version |
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
cnmetdval.1 | β’ π· = (abs β β ) |
Ref | Expression |
---|---|
cnmetdval | β’ ((π΄ β β β§ π΅ β β) β (π΄π·π΅) = (absβ(π΄ β π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subf 8161 | . . 3 β’ β :(β Γ β)βΆβ | |
2 | opelxpi 4660 | . . 3 β’ ((π΄ β β β§ π΅ β β) β β¨π΄, π΅β© β (β Γ β)) | |
3 | fvco3 5589 | . . 3 β’ (( β :(β Γ β)βΆβ β§ β¨π΄, π΅β© β (β Γ β)) β ((abs β β )ββ¨π΄, π΅β©) = (absβ( β ββ¨π΄, π΅β©))) | |
4 | 1, 2, 3 | sylancr 414 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((abs β β )ββ¨π΄, π΅β©) = (absβ( β ββ¨π΄, π΅β©))) |
5 | df-ov 5880 | . . 3 β’ (π΄π·π΅) = (π·ββ¨π΄, π΅β©) | |
6 | cnmetdval.1 | . . . 4 β’ π· = (abs β β ) | |
7 | 6 | fveq1i 5518 | . . 3 β’ (π·ββ¨π΄, π΅β©) = ((abs β β )ββ¨π΄, π΅β©) |
8 | 5, 7 | eqtri 2198 | . 2 β’ (π΄π·π΅) = ((abs β β )ββ¨π΄, π΅β©) |
9 | df-ov 5880 | . . 3 β’ (π΄ β π΅) = ( β ββ¨π΄, π΅β©) | |
10 | 9 | fveq2i 5520 | . 2 β’ (absβ(π΄ β π΅)) = (absβ( β ββ¨π΄, π΅β©)) |
11 | 4, 8, 10 | 3eqtr4g 2235 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄π·π΅) = (absβ(π΄ β π΅))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 β¨cop 3597 Γ cxp 4626 β ccom 4632 βΆwf 5214 βcfv 5218 (class class class)co 5877 βcc 7811 β cmin 8130 abscabs 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-sub 8132 |
This theorem is referenced by: cnmet 14115 cnbl0 14119 cnblcld 14120 remetdval 14124 addcncntoplem 14136 divcnap 14140 cncfmet 14164 cnopnap 14179 limcimolemlt 14218 cnplimcim 14221 cnplimclemr 14223 limccnpcntop 14229 limccnp2lem 14230 |
Copyright terms: Public domain | W3C validator |