ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0d Unicode version

Theorem mulap0d 8633
Description: The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
Hypotheses
Ref Expression
mulap0d.1  |-  ( ph  ->  A  e.  CC )
mulap0d.2  |-  ( ph  ->  B  e.  CC )
mulap0d.3  |-  ( ph  ->  A #  0 )
mulap0d.4  |-  ( ph  ->  B #  0 )
Assertion
Ref Expression
mulap0d  |-  ( ph  ->  ( A  x.  B
) #  0 )

Proof of Theorem mulap0d
StepHypRef Expression
1 mulap0d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulap0d.3 . 2  |-  ( ph  ->  A #  0 )
3 mulap0d.2 . 2  |-  ( ph  ->  B  e.  CC )
4 mulap0d.4 . 2  |-  ( ph  ->  B #  0 )
5 mulap0 8629 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
61, 2, 3, 4, 5syl22anc 1250 1  |-  ( ph  ->  ( A  x.  B
) #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   class class class wbr 4018  (class class class)co 5891   CCcc 7827   0cc0 7829    x. cmul 7834   # cap 8556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557
This theorem is referenced by:  divdivdivap  8688  modqmulnn  10360  exp3vallem  10539  mulexpzap  10578  absrpclap  11088  reccn2ap  11339  trireciplem  11526  prodfap0  11571  fprodap0  11647  fprodap0f  11662  efaddlem  11700  tanval3ap  11740  tanaddaplem  11764  tanaddap  11765  lcmcllem  12085  lcmgcdlem  12095  pcpremul  12311  pcmul  12319  pcqmul  12321  pcaddlem  12356  lgsdilem2  14834  lgsdi  14835  apdiff  15194
  Copyright terms: Public domain W3C validator