ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuldivapd Unicode version

Theorem divmuldivapd 8289
Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divmuld.3  |-  ( ph  ->  C  e.  CC )
divmuldivapd.4  |-  ( ph  ->  D  e.  CC )
divmuldivapd.5  |-  ( ph  ->  B #  0 )
divmuldivapd.6  |-  ( ph  ->  D #  0 )
Assertion
Ref Expression
divmuldivapd  |-  ( ph  ->  ( ( A  /  B )  x.  ( C  /  D ) )  =  ( ( A  x.  C )  / 
( B  x.  D
) ) )

Proof of Theorem divmuldivapd
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divmuld.3 . 2  |-  ( ph  ->  C  e.  CC )
3 divcld.2 . . 3  |-  ( ph  ->  B  e.  CC )
4 divmuldivapd.5 . . 3  |-  ( ph  ->  B #  0 )
53, 4jca 300 . 2  |-  ( ph  ->  ( B  e.  CC  /\  B #  0 ) )
6 divmuldivapd.4 . . 3  |-  ( ph  ->  D  e.  CC )
7 divmuldivapd.6 . . 3  |-  ( ph  ->  D #  0 )
86, 7jca 300 . 2  |-  ( ph  ->  ( D  e.  CC  /\  D #  0 ) )
9 divmuldivap 8169 . 2  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( ( B  e.  CC  /\  B #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  x.  ( C  /  D
) )  =  ( ( A  x.  C
)  /  ( B  x.  D ) ) )
101, 2, 5, 8, 9syl22anc 1175 1  |-  ( ph  ->  ( ( A  /  B )  x.  ( C  /  D ) )  =  ( ( A  x.  C )  / 
( B  x.  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   class class class wbr 3843  (class class class)co 5644   CCcc 7338   0cc0 7340    x. cmul 7345   # cap 8048    / cdiv 8129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-mulrcl 7434  ax-addcom 7435  ax-mulcom 7436  ax-addass 7437  ax-mulass 7438  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-1rid 7442  ax-0id 7443  ax-rnegex 7444  ax-precex 7445  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-apti 7450  ax-pre-ltadd 7451  ax-pre-mulgt0 7452  ax-pre-mulext 7453
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-br 3844  df-opab 3898  df-id 4118  df-po 4121  df-iso 4122  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-iota 4975  df-fun 5012  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-reap 8042  df-ap 8049  df-div 8130
This theorem is referenced by:  faclbnd2  10138  bcm1k  10156  bcp1n  10157  resqrexlemcalc2  10436  efcllemp  10935  efaddlem  10951  tanaddaplem  11016
  Copyright terms: Public domain W3C validator