Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tanaddaplem | Unicode version |
Description: A useful intermediate step in tanaddap 11636 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.) |
Ref | Expression |
---|---|
tanaddaplem | # # # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coscl 11604 | . . . . 5 | |
2 | 1 | ad2antrr 480 | . . . 4 # # |
3 | coscl 11604 | . . . . 5 | |
4 | 3 | ad2antlr 481 | . . . 4 # # |
5 | 2, 4 | mulcld 7898 | . . 3 # # |
6 | sincl 11603 | . . . . 5 | |
7 | 6 | ad2antrr 480 | . . . 4 # # |
8 | sincl 11603 | . . . . 5 | |
9 | 8 | ad2antlr 481 | . . . 4 # # |
10 | 7, 9 | mulcld 7898 | . . 3 # # |
11 | subap0 8518 | . . 3 # # | |
12 | 5, 10, 11 | syl2anc 409 | . 2 # # # # |
13 | cosadd 11634 | . . . 4 | |
14 | 13 | adantr 274 | . . 3 # # |
15 | 14 | breq1d 3975 | . 2 # # # # |
16 | tanvalap 11605 | . . . . . . 7 # | |
17 | 16 | ad2ant2r 501 | . . . . . 6 # # |
18 | tanvalap 11605 | . . . . . . 7 # | |
19 | 18 | ad2ant2l 500 | . . . . . 6 # # |
20 | 17, 19 | oveq12d 5842 | . . . . 5 # # |
21 | simprl 521 | . . . . . 6 # # # | |
22 | simprr 522 | . . . . . 6 # # # | |
23 | 7, 2, 9, 4, 21, 22 | divmuldivapd 8705 | . . . . 5 # # |
24 | 20, 23 | eqtrd 2190 | . . . 4 # # |
25 | 24 | breq1d 3975 | . . 3 # # # # |
26 | 1cnd 7894 | . . . 4 # # | |
27 | 2, 4, 21, 22 | mulap0d 8532 | . . . 4 # # # |
28 | 10, 5, 26, 27 | apdivmuld 8686 | . . 3 # # # # |
29 | 5 | mulid1d 7895 | . . . 4 # # |
30 | 29 | breq1d 3975 | . . 3 # # # # |
31 | 25, 28, 30 | 3bitrd 213 | . 2 # # # # |
32 | 12, 15, 31 | 3bitr4d 219 | 1 # # # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3965 cfv 5170 (class class class)co 5824 cc 7730 cc0 7732 c1 7733 caddc 7735 cmul 7737 cmin 8046 # cap 8456 cdiv 8545 csin 11541 ccos 11542 ctan 11543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-disj 3943 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-isom 5179 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-frec 6338 df-1o 6363 df-oadd 6367 df-er 6480 df-en 6686 df-dom 6687 df-fin 6688 df-sup 6928 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-q 9529 df-rp 9561 df-ico 9798 df-fz 9913 df-fzo 10042 df-seqfrec 10345 df-exp 10419 df-fac 10600 df-bc 10622 df-ihash 10650 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-clim 11176 df-sumdc 11251 df-ef 11545 df-sin 11547 df-cos 11548 df-tan 11549 |
This theorem is referenced by: tanaddap 11636 |
Copyright terms: Public domain | W3C validator |