ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanaddaplem Unicode version

Theorem tanaddaplem 11445
Description: A useful intermediate step in tanaddap 11446 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
Assertion
Ref Expression
tanaddaplem  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 ) )

Proof of Theorem tanaddaplem
StepHypRef Expression
1 coscl 11414 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
21ad2antrr 479 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  A
)  e.  CC )
3 coscl 11414 . . . . 5  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
43ad2antlr 480 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  B
)  e.  CC )
52, 4mulcld 7786 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  A )  x.  ( cos `  B ) )  e.  CC )
6 sincl 11413 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
76ad2antrr 479 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( sin `  A
)  e.  CC )
8 sincl 11413 . . . . 5  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
98ad2antlr 480 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( sin `  B
)  e.  CC )
107, 9mulcld 7786 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( sin `  A )  x.  ( sin `  B ) )  e.  CC )
11 subap0 8405 . . 3  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC  /\  ( ( sin `  A )  x.  ( sin `  B
) )  e.  CC )  ->  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) #  0  <->  ( ( cos `  A )  x.  ( cos `  B ) ) #  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
125, 10, 11syl2anc 408 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) #  0  <->  ( ( cos `  A )  x.  ( cos `  B ) ) #  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
13 cosadd 11444 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
1413adantr 274 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
1514breq1d 3939 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) #  0 ) )
16 tanvalap 11415 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
1716ad2ant2r 500 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
18 tanvalap 11415 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( cos `  B ) #  0 )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
1918ad2ant2l 499 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( tan `  B
)  =  ( ( sin `  B )  /  ( cos `  B
) ) )
2017, 19oveq12d 5792 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( tan `  A )  x.  ( tan `  B ) )  =  ( ( ( sin `  A )  /  ( cos `  A
) )  x.  (
( sin `  B
)  /  ( cos `  B ) ) ) )
21 simprl 520 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  A
) #  0 )
22 simprr 521 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  B
) #  0 )
237, 2, 9, 4, 21, 22divmuldivapd 8592 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( sin `  A )  /  ( cos `  A
) )  x.  (
( sin `  B
)  /  ( cos `  B ) ) )  =  ( ( ( sin `  A )  x.  ( sin `  B
) )  /  (
( cos `  A
)  x.  ( cos `  B ) ) ) )
2420, 23eqtrd 2172 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( tan `  A )  x.  ( tan `  B ) )  =  ( ( ( sin `  A )  x.  ( sin `  B
) )  /  (
( cos `  A
)  x.  ( cos `  B ) ) ) )
2524breq1d 3939 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( tan `  A )  x.  ( tan `  B
) ) #  1  <->  (
( ( sin `  A
)  x.  ( sin `  B ) )  / 
( ( cos `  A
)  x.  ( cos `  B ) ) ) #  1 ) )
26 1cnd 7782 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  1  e.  CC )
272, 4, 21, 22mulap0d 8419 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  A )  x.  ( cos `  B ) ) #  0 )
2810, 5, 26, 27apdivmuld 8573 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( ( sin `  A
)  x.  ( sin `  B ) )  / 
( ( cos `  A
)  x.  ( cos `  B ) ) ) #  1  <->  ( ( ( cos `  A )  x.  ( cos `  B
) )  x.  1 ) #  ( ( sin `  A )  x.  ( sin `  B ) ) ) )
295mulid1d 7783 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( cos `  A )  x.  ( cos `  B
) )  x.  1 )  =  ( ( cos `  A )  x.  ( cos `  B
) ) )
3029breq1d 3939 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 ) #  ( ( sin `  A )  x.  ( sin `  B
) )  <->  ( ( cos `  A )  x.  ( cos `  B
) ) #  ( ( sin `  A )  x.  ( sin `  B
) ) ) )
3125, 28, 303bitrd 213 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( tan `  A )  x.  ( tan `  B
) ) #  1  <->  (
( cos `  A
)  x.  ( cos `  B ) ) #  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
3212, 15, 313bitr4d 219 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    - cmin 7933   # cap 8343    / cdiv 8432   sincsin 11350   cosccos 11351   tanctan 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357  df-tan 11358
This theorem is referenced by:  tanaddap  11446
  Copyright terms: Public domain W3C validator