ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanaddaplem Unicode version

Theorem tanaddaplem 11920
Description: A useful intermediate step in tanaddap 11921 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) (Revised by Jim Kingdon, 25-Dec-2022.)
Assertion
Ref Expression
tanaddaplem  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 ) )

Proof of Theorem tanaddaplem
StepHypRef Expression
1 coscl 11889 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
21ad2antrr 488 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  A
)  e.  CC )
3 coscl 11889 . . . . 5  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
43ad2antlr 489 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  B
)  e.  CC )
52, 4mulcld 8064 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  A )  x.  ( cos `  B ) )  e.  CC )
6 sincl 11888 . . . . 5  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
76ad2antrr 488 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( sin `  A
)  e.  CC )
8 sincl 11888 . . . . 5  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
98ad2antlr 489 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( sin `  B
)  e.  CC )
107, 9mulcld 8064 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( sin `  A )  x.  ( sin `  B ) )  e.  CC )
11 subap0 8687 . . 3  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC  /\  ( ( sin `  A )  x.  ( sin `  B
) )  e.  CC )  ->  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) #  0  <->  ( ( cos `  A )  x.  ( cos `  B ) ) #  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
125, 10, 11syl2anc 411 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) #  0  <->  ( ( cos `  A )  x.  ( cos `  B ) ) #  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
13 cosadd 11919 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
1413adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
1514breq1d 4044 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) #  0 ) )
16 tanvalap 11890 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A
)  /  ( cos `  A ) ) )
1716ad2ant2r 509 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( tan `  A
)  =  ( ( sin `  A )  /  ( cos `  A
) ) )
18 tanvalap 11890 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( cos `  B ) #  0 )  ->  ( tan `  B )  =  ( ( sin `  B
)  /  ( cos `  B ) ) )
1918ad2ant2l 508 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( tan `  B
)  =  ( ( sin `  B )  /  ( cos `  B
) ) )
2017, 19oveq12d 5943 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( tan `  A )  x.  ( tan `  B ) )  =  ( ( ( sin `  A )  /  ( cos `  A
) )  x.  (
( sin `  B
)  /  ( cos `  B ) ) ) )
21 simprl 529 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  A
) #  0 )
22 simprr 531 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( cos `  B
) #  0 )
237, 2, 9, 4, 21, 22divmuldivapd 8876 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( sin `  A )  /  ( cos `  A
) )  x.  (
( sin `  B
)  /  ( cos `  B ) ) )  =  ( ( ( sin `  A )  x.  ( sin `  B
) )  /  (
( cos `  A
)  x.  ( cos `  B ) ) ) )
2420, 23eqtrd 2229 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( tan `  A )  x.  ( tan `  B ) )  =  ( ( ( sin `  A )  x.  ( sin `  B
) )  /  (
( cos `  A
)  x.  ( cos `  B ) ) ) )
2524breq1d 4044 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( tan `  A )  x.  ( tan `  B
) ) #  1  <->  (
( ( sin `  A
)  x.  ( sin `  B ) )  / 
( ( cos `  A
)  x.  ( cos `  B ) ) ) #  1 ) )
26 1cnd 8059 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  1  e.  CC )
272, 4, 21, 22mulap0d 8702 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  A )  x.  ( cos `  B ) ) #  0 )
2810, 5, 26, 27apdivmuld 8857 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( ( sin `  A
)  x.  ( sin `  B ) )  / 
( ( cos `  A
)  x.  ( cos `  B ) ) ) #  1  <->  ( ( ( cos `  A )  x.  ( cos `  B
) )  x.  1 ) #  ( ( sin `  A )  x.  ( sin `  B ) ) ) )
295mulridd 8060 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( cos `  A )  x.  ( cos `  B
) )  x.  1 )  =  ( ( cos `  A )  x.  ( cos `  B
) ) )
3029breq1d 4044 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  x.  1 ) #  ( ( sin `  A )  x.  ( sin `  B
) )  <->  ( ( cos `  A )  x.  ( cos `  B
) ) #  ( ( sin `  A )  x.  ( sin `  B
) ) ) )
3125, 28, 303bitrd 214 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( ( tan `  A )  x.  ( tan `  B
) ) #  1  <->  (
( cos `  A
)  x.  ( cos `  B ) ) #  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
3212, 15, 313bitr4d 220 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( cos `  A ) #  0  /\  ( cos `  B
) #  0 ) )  ->  ( ( cos `  ( A  +  B
) ) #  0  <->  (
( tan `  A
)  x.  ( tan `  B ) ) #  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    - cmin 8214   # cap 8625    / cdiv 8716   sincsin 11826   cosccos 11827   tanctan 11828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833  df-tan 11834
This theorem is referenced by:  tanaddap  11921
  Copyright terms: Public domain W3C validator