ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuldivapd GIF version

Theorem divmuldivapd 8809
Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
divcld.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
divcld.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
divmuld.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
divmuldivapd.4 (๐œ‘ โ†’ ๐ท โˆˆ โ„‚)
divmuldivapd.5 (๐œ‘ โ†’ ๐ต # 0)
divmuldivapd.6 (๐œ‘ โ†’ ๐ท # 0)
Assertion
Ref Expression
divmuldivapd (๐œ‘ โ†’ ((๐ด / ๐ต) ยท (๐ถ / ๐ท)) = ((๐ด ยท ๐ถ) / (๐ต ยท ๐ท)))

Proof of Theorem divmuldivapd
StepHypRef Expression
1 divcld.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 divmuld.3 . 2 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
3 divcld.2 . . 3 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
4 divmuldivapd.5 . . 3 (๐œ‘ โ†’ ๐ต # 0)
53, 4jca 306 . 2 (๐œ‘ โ†’ (๐ต โˆˆ โ„‚ โˆง ๐ต # 0))
6 divmuldivapd.4 . . 3 (๐œ‘ โ†’ ๐ท โˆˆ โ„‚)
7 divmuldivapd.6 . . 3 (๐œ‘ โ†’ ๐ท # 0)
86, 7jca 306 . 2 (๐œ‘ โ†’ (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))
9 divmuldivap 8689 . 2 (((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โˆง ((๐ต โˆˆ โ„‚ โˆง ๐ต # 0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท # 0))) โ†’ ((๐ด / ๐ต) ยท (๐ถ / ๐ท)) = ((๐ด ยท ๐ถ) / (๐ต ยท ๐ท)))
101, 2, 5, 8, 9syl22anc 1250 1 (๐œ‘ โ†’ ((๐ด / ๐ต) ยท (๐ถ / ๐ท)) = ((๐ด ยท ๐ถ) / (๐ต ยท ๐ท)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   = wceq 1364   โˆˆ wcel 2160   class class class wbr 4018  (class class class)co 5892  โ„‚cc 7829  0cc0 7831   ยท cmul 7836   # cap 8558   / cdiv 8649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-mulrcl 7930  ax-addcom 7931  ax-mulcom 7932  ax-addass 7933  ax-mulass 7934  ax-distr 7935  ax-i2m1 7936  ax-0lt1 7937  ax-1rid 7938  ax-0id 7939  ax-rnegex 7940  ax-precex 7941  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-ltwlin 7944  ax-pre-lttrn 7945  ax-pre-apti 7946  ax-pre-ltadd 7947  ax-pre-mulgt0 7948  ax-pre-mulext 7949
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-le 8018  df-sub 8150  df-neg 8151  df-reap 8552  df-ap 8559  df-div 8650
This theorem is referenced by:  faclbnd2  10742  bcm1k  10760  bcp1n  10761  resqrexlemcalc2  11044  prodfrecap  11574  fprodrec  11657  efcllemp  11686  efaddlem  11702  tanaddaplem  11766  pythagtriplem16  12299  pcpremul  12313  pcqmul  12323  mul4sqlem  12411
  Copyright terms: Public domain W3C validator