ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuldivapd GIF version

Theorem divmuldivapd 8749
Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
divcld.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuldivapd.4 (𝜑𝐷 ∈ ℂ)
divmuldivapd.5 (𝜑𝐵 # 0)
divmuldivapd.6 (𝜑𝐷 # 0)
Assertion
Ref Expression
divmuldivapd (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))

Proof of Theorem divmuldivapd
StepHypRef Expression
1 divcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
3 divcld.2 . . 3 (𝜑𝐵 ∈ ℂ)
4 divmuldivapd.5 . . 3 (𝜑𝐵 # 0)
53, 4jca 304 . 2 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
6 divmuldivapd.4 . . 3 (𝜑𝐷 ∈ ℂ)
7 divmuldivapd.6 . . 3 (𝜑𝐷 # 0)
86, 7jca 304 . 2 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 # 0))
9 divmuldivap 8629 . 2 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
101, 2, 5, 8, 9syl22anc 1234 1 (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  0cc0 7774   · cmul 7779   # cap 8500   / cdiv 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590
This theorem is referenced by:  faclbnd2  10676  bcm1k  10694  bcp1n  10695  resqrexlemcalc2  10979  prodfrecap  11509  fprodrec  11592  efcllemp  11621  efaddlem  11637  tanaddaplem  11701  pythagtriplem16  12233  pcpremul  12247  pcqmul  12257  mul4sqlem  12345
  Copyright terms: Public domain W3C validator