| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divmuldivapd | GIF version | ||
| Description: Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| divcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmuldivapd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| divmuldivapd.5 | ⊢ (𝜑 → 𝐵 # 0) |
| divmuldivapd.6 | ⊢ (𝜑 → 𝐷 # 0) |
| Ref | Expression |
|---|---|
| divmuldivapd | ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | divcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | divmuldivapd.5 | . . 3 ⊢ (𝜑 → 𝐵 # 0) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 6 | divmuldivapd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 7 | divmuldivapd.6 | . . 3 ⊢ (𝜑 → 𝐷 # 0) | |
| 8 | 6, 7 | jca 306 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 # 0)) |
| 9 | divmuldivap 8800 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | |
| 10 | 1, 2, 5, 8, 9 | syl22anc 1251 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 ℂcc 7938 0cc0 7940 · cmul 7945 # cap 8669 / cdiv 8760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 |
| This theorem is referenced by: faclbnd2 10904 bcm1k 10922 bcp1n 10923 resqrexlemcalc2 11396 prodfrecap 11927 fprodrec 12010 efcllemp 12039 efaddlem 12055 tanaddaplem 12119 pythagtriplem16 12672 pcpremul 12686 pcqmul 12696 mul4sqlem 12786 |
| Copyright terms: Public domain | W3C validator |