ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvlemap Unicode version

Theorem dvlemap 15348
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvlem.1  |-  ( ph  ->  F : D --> CC )
dvlem.2  |-  ( ph  ->  D  C_  CC )
dvlem.3  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
dvlemap  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( ( ( F `
 A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
Distinct variable groups:    w, A    w, B    w, D
Allowed substitution hints:    ph( w)    F( w)

Proof of Theorem dvlemap
StepHypRef Expression
1 dvlem.1 . . . . 5  |-  ( ph  ->  F : D --> CC )
21adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  F : D --> CC )
3 elrabi 2956 . . . . 5  |-  ( A  e.  { w  e.  D  |  w #  B }  ->  A  e.  D
)
43adantl 277 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  A  e.  D )
52, 4ffvelcdmd 5770 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( F `  A
)  e.  CC )
6 dvlem.3 . . . . 5  |-  ( ph  ->  B  e.  D )
76adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  B  e.  D )
82, 7ffvelcdmd 5770 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( F `  B
)  e.  CC )
95, 8subcld 8453 . 2  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( ( F `  A )  -  ( F `  B )
)  e.  CC )
10 dvlem.2 . . . . 5  |-  ( ph  ->  D  C_  CC )
1110adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  D  C_  CC )
1211, 4sseldd 3225 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  A  e.  CC )
1310, 6sseldd 3225 . . . 4  |-  ( ph  ->  B  e.  CC )
1413adantr 276 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  B  e.  CC )
1512, 14subcld 8453 . 2  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( A  -  B
)  e.  CC )
16 breq1 4085 . . . . . 6  |-  ( w  =  A  ->  (
w #  B  <->  A #  B
) )
1716elrab 2959 . . . . 5  |-  ( A  e.  { w  e.  D  |  w #  B } 
<->  ( A  e.  D  /\  A #  B )
)
1817simprbi 275 . . . 4  |-  ( A  e.  { w  e.  D  |  w #  B }  ->  A #  B )
1918adantl 277 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  A #  B )
2012, 14, 19subap0d 8787 . 2  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( A  -  B
) #  0 )
219, 15, 20divclapd 8933 1  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( ( ( F `
 A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   {crab 2512    C_ wss 3197   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   CCcc 7993    - cmin 8313   # cap 8724    / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by:  dvfgg  15356  dvcnp2cntop  15367  dvaddxxbr  15369  dvmulxxbr  15370  dvcoapbr  15375  dvcjbr  15376
  Copyright terms: Public domain W3C validator