ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvlemap Unicode version

Theorem dvlemap 14834
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvlem.1  |-  ( ph  ->  F : D --> CC )
dvlem.2  |-  ( ph  ->  D  C_  CC )
dvlem.3  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
dvlemap  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( ( ( F `
 A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
Distinct variable groups:    w, A    w, B    w, D
Allowed substitution hints:    ph( w)    F( w)

Proof of Theorem dvlemap
StepHypRef Expression
1 dvlem.1 . . . . 5  |-  ( ph  ->  F : D --> CC )
21adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  F : D --> CC )
3 elrabi 2913 . . . . 5  |-  ( A  e.  { w  e.  D  |  w #  B }  ->  A  e.  D
)
43adantl 277 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  A  e.  D )
52, 4ffvelcdmd 5694 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( F `  A
)  e.  CC )
6 dvlem.3 . . . . 5  |-  ( ph  ->  B  e.  D )
76adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  B  e.  D )
82, 7ffvelcdmd 5694 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( F `  B
)  e.  CC )
95, 8subcld 8330 . 2  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( ( F `  A )  -  ( F `  B )
)  e.  CC )
10 dvlem.2 . . . . 5  |-  ( ph  ->  D  C_  CC )
1110adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  D  C_  CC )
1211, 4sseldd 3180 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  A  e.  CC )
1310, 6sseldd 3180 . . . 4  |-  ( ph  ->  B  e.  CC )
1413adantr 276 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  B  e.  CC )
1512, 14subcld 8330 . 2  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( A  -  B
)  e.  CC )
16 breq1 4032 . . . . . 6  |-  ( w  =  A  ->  (
w #  B  <->  A #  B
) )
1716elrab 2916 . . . . 5  |-  ( A  e.  { w  e.  D  |  w #  B } 
<->  ( A  e.  D  /\  A #  B )
)
1817simprbi 275 . . . 4  |-  ( A  e.  { w  e.  D  |  w #  B }  ->  A #  B )
1918adantl 277 . . 3  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  ->  A #  B )
2012, 14, 19subap0d 8663 . 2  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( A  -  B
) #  0 )
219, 15, 20divclapd 8809 1  |-  ( (
ph  /\  A  e.  { w  e.  D  |  w #  B } )  -> 
( ( ( F `
 A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   {crab 2476    C_ wss 3153   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   CCcc 7870    - cmin 8190   # cap 8600    / cdiv 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692
This theorem is referenced by:  dvfgg  14842  dvcnp2cntop  14848  dvaddxxbr  14850  dvmulxxbr  14851  dvcoapbr  14856  dvcjbr  14857
  Copyright terms: Public domain W3C validator