Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvlemap | GIF version |
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvlem.1 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
dvlem.2 | ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
dvlem.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
dvlemap | ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvlem.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ) |
3 | elrabi 2865 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 ∈ 𝐷) | |
4 | 3 | adantl 275 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ 𝐷) |
5 | 2, 4 | ffvelrnd 5603 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐴) ∈ ℂ) |
6 | dvlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
7 | 6 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ 𝐷) |
8 | 2, 7 | ffvelrnd 5603 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐵) ∈ ℂ) |
9 | 5, 8 | subcld 8186 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → ((𝐹‘𝐴) − (𝐹‘𝐵)) ∈ ℂ) |
10 | dvlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) | |
11 | 10 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐷 ⊆ ℂ) |
12 | 11, 4 | sseldd 3129 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ ℂ) |
13 | 10, 6 | sseldd 3129 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 13 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ ℂ) |
15 | 12, 14 | subcld 8186 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) ∈ ℂ) |
16 | breq1 3968 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (𝑤 # 𝐵 ↔ 𝐴 # 𝐵)) | |
17 | 16 | elrab 2868 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} ↔ (𝐴 ∈ 𝐷 ∧ 𝐴 # 𝐵)) |
18 | 17 | simprbi 273 | . . . 4 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 # 𝐵) |
19 | 18 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 # 𝐵) |
20 | 12, 14, 19 | subap0d 8519 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) # 0) |
21 | 9, 15, 20 | divclapd 8663 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 {crab 2439 ⊆ wss 3102 class class class wbr 3965 ⟶wf 5166 ‘cfv 5170 (class class class)co 5824 ℂcc 7730 − cmin 8046 # cap 8456 / cdiv 8545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-po 4256 df-iso 4257 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 |
This theorem is referenced by: dvfgg 13068 dvcnp2cntop 13074 dvaddxxbr 13076 dvmulxxbr 13077 dvcoapbr 13082 dvcjbr 13083 |
Copyright terms: Public domain | W3C validator |