| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvlemap | GIF version | ||
| Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
| Ref | Expression |
|---|---|
| dvlem.1 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| dvlem.2 | ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
| dvlem.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dvlemap | ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvlem.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ) |
| 3 | elrabi 2936 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 ∈ 𝐷) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ 𝐷) |
| 5 | 2, 4 | ffvelcdmd 5744 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐴) ∈ ℂ) |
| 6 | dvlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ 𝐷) |
| 8 | 2, 7 | ffvelcdmd 5744 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐵) ∈ ℂ) |
| 9 | 5, 8 | subcld 8425 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → ((𝐹‘𝐴) − (𝐹‘𝐵)) ∈ ℂ) |
| 10 | dvlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐷 ⊆ ℂ) |
| 12 | 11, 4 | sseldd 3205 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ ℂ) |
| 13 | 10, 6 | sseldd 3205 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 14 | 13 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ ℂ) |
| 15 | 12, 14 | subcld 8425 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) ∈ ℂ) |
| 16 | breq1 4065 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (𝑤 # 𝐵 ↔ 𝐴 # 𝐵)) | |
| 17 | 16 | elrab 2939 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} ↔ (𝐴 ∈ 𝐷 ∧ 𝐴 # 𝐵)) |
| 18 | 17 | simprbi 275 | . . . 4 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 # 𝐵) |
| 19 | 18 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 # 𝐵) |
| 20 | 12, 14, 19 | subap0d 8759 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) # 0) |
| 21 | 9, 15, 20 | divclapd 8905 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 {crab 2492 ⊆ wss 3177 class class class wbr 4062 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 − cmin 8285 # cap 8696 / cdiv 8787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 |
| This theorem is referenced by: dvfgg 15327 dvcnp2cntop 15338 dvaddxxbr 15340 dvmulxxbr 15341 dvcoapbr 15346 dvcjbr 15347 |
| Copyright terms: Public domain | W3C validator |