Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvlemap | GIF version |
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvlem.1 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
dvlem.2 | ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
dvlem.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
dvlemap | ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvlem.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ) |
3 | elrabi 2879 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 ∈ 𝐷) | |
4 | 3 | adantl 275 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ 𝐷) |
5 | 2, 4 | ffvelrnd 5621 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐴) ∈ ℂ) |
6 | dvlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
7 | 6 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ 𝐷) |
8 | 2, 7 | ffvelrnd 5621 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐵) ∈ ℂ) |
9 | 5, 8 | subcld 8209 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → ((𝐹‘𝐴) − (𝐹‘𝐵)) ∈ ℂ) |
10 | dvlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) | |
11 | 10 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐷 ⊆ ℂ) |
12 | 11, 4 | sseldd 3143 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ ℂ) |
13 | 10, 6 | sseldd 3143 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 13 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ ℂ) |
15 | 12, 14 | subcld 8209 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) ∈ ℂ) |
16 | breq1 3985 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (𝑤 # 𝐵 ↔ 𝐴 # 𝐵)) | |
17 | 16 | elrab 2882 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} ↔ (𝐴 ∈ 𝐷 ∧ 𝐴 # 𝐵)) |
18 | 17 | simprbi 273 | . . . 4 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 # 𝐵) |
19 | 18 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 # 𝐵) |
20 | 12, 14, 19 | subap0d 8542 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) # 0) |
21 | 9, 15, 20 | divclapd 8686 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 {crab 2448 ⊆ wss 3116 class class class wbr 3982 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 − cmin 8069 # cap 8479 / cdiv 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 |
This theorem is referenced by: dvfgg 13297 dvcnp2cntop 13303 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 dvcjbr 13312 |
Copyright terms: Public domain | W3C validator |