ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvlemap GIF version

Theorem dvlemap 14942
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlemap ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐷
Allowed substitution hints:   𝜑(𝑤)   𝐹(𝑤)

Proof of Theorem dvlemap
StepHypRef Expression
1 dvlem.1 . . . . 5 (𝜑𝐹:𝐷⟶ℂ)
21adantr 276 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ)
3 elrabi 2917 . . . . 5 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} → 𝐴𝐷)
43adantl 277 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴𝐷)
52, 4ffvelcdmd 5699 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . 5 (𝜑𝐵𝐷)
76adantr 276 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐵𝐷)
82, 7ffvelcdmd 5699 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 8340 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . 5 (𝜑𝐷 ⊆ ℂ)
1110adantr 276 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3185 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴 ∈ ℂ)
1310, 6sseldd 3185 . . . 4 (𝜑𝐵 ∈ ℂ)
1413adantr 276 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐵 ∈ ℂ)
1512, 14subcld 8340 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐴𝐵) ∈ ℂ)
16 breq1 4037 . . . . . 6 (𝑤 = 𝐴 → (𝑤 # 𝐵𝐴 # 𝐵))
1716elrab 2920 . . . . 5 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} ↔ (𝐴𝐷𝐴 # 𝐵))
1817simprbi 275 . . . 4 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} → 𝐴 # 𝐵)
1918adantl 277 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴 # 𝐵)
2012, 14, 19subap0d 8674 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐴𝐵) # 0)
219, 15, 20divclapd 8820 1 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  {crab 2479  wss 3157   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5923  cc 7880  cmin 8200   # cap 8611   / cdiv 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703
This theorem is referenced by:  dvfgg  14950  dvcnp2cntop  14961  dvaddxxbr  14963  dvmulxxbr  14964  dvcoapbr  14969  dvcjbr  14970
  Copyright terms: Public domain W3C validator