ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvlemap GIF version

Theorem dvlemap 13443
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlemap ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐷
Allowed substitution hints:   𝜑(𝑤)   𝐹(𝑤)

Proof of Theorem dvlemap
StepHypRef Expression
1 dvlem.1 . . . . 5 (𝜑𝐹:𝐷⟶ℂ)
21adantr 274 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ)
3 elrabi 2883 . . . . 5 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} → 𝐴𝐷)
43adantl 275 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴𝐷)
52, 4ffvelrnd 5632 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . 5 (𝜑𝐵𝐷)
76adantr 274 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐵𝐷)
82, 7ffvelrnd 5632 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 8230 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . 5 (𝜑𝐷 ⊆ ℂ)
1110adantr 274 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3148 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴 ∈ ℂ)
1310, 6sseldd 3148 . . . 4 (𝜑𝐵 ∈ ℂ)
1413adantr 274 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐵 ∈ ℂ)
1512, 14subcld 8230 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐴𝐵) ∈ ℂ)
16 breq1 3992 . . . . . 6 (𝑤 = 𝐴 → (𝑤 # 𝐵𝐴 # 𝐵))
1716elrab 2886 . . . . 5 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} ↔ (𝐴𝐷𝐴 # 𝐵))
1817simprbi 273 . . . 4 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} → 𝐴 # 𝐵)
1918adantl 275 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴 # 𝐵)
2012, 14, 19subap0d 8563 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐴𝐵) # 0)
219, 15, 20divclapd 8707 1 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  {crab 2452  wss 3121   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  cc 7772  cmin 8090   # cap 8500   / cdiv 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590
This theorem is referenced by:  dvfgg  13451  dvcnp2cntop  13457  dvaddxxbr  13459  dvmulxxbr  13460  dvcoapbr  13465  dvcjbr  13466
  Copyright terms: Public domain W3C validator