![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvlemap | GIF version |
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.) |
Ref | Expression |
---|---|
dvlem.1 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
dvlem.2 | ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
dvlem.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
dvlemap | ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvlem.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ) |
3 | elrabi 2890 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 ∈ 𝐷) | |
4 | 3 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ 𝐷) |
5 | 2, 4 | ffvelcdmd 5652 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐴) ∈ ℂ) |
6 | dvlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ 𝐷) |
8 | 2, 7 | ffvelcdmd 5652 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐹‘𝐵) ∈ ℂ) |
9 | 5, 8 | subcld 8266 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → ((𝐹‘𝐴) − (𝐹‘𝐵)) ∈ ℂ) |
10 | dvlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) | |
11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐷 ⊆ ℂ) |
12 | 11, 4 | sseldd 3156 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 ∈ ℂ) |
13 | 10, 6 | sseldd 3156 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
14 | 13 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐵 ∈ ℂ) |
15 | 12, 14 | subcld 8266 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) ∈ ℂ) |
16 | breq1 4006 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (𝑤 # 𝐵 ↔ 𝐴 # 𝐵)) | |
17 | 16 | elrab 2893 | . . . . 5 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} ↔ (𝐴 ∈ 𝐷 ∧ 𝐴 # 𝐵)) |
18 | 17 | simprbi 275 | . . . 4 ⊢ (𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵} → 𝐴 # 𝐵) |
19 | 18 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → 𝐴 # 𝐵) |
20 | 12, 14, 19 | subap0d 8599 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (𝐴 − 𝐵) # 0) |
21 | 9, 15, 20 | divclapd 8745 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑤 ∈ 𝐷 ∣ 𝑤 # 𝐵}) → (((𝐹‘𝐴) − (𝐹‘𝐵)) / (𝐴 − 𝐵)) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 {crab 2459 ⊆ wss 3129 class class class wbr 4003 ⟶wf 5212 ‘cfv 5216 (class class class)co 5874 ℂcc 7808 − cmin 8126 # cap 8536 / cdiv 8627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-po 4296 df-iso 4297 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-reap 8530 df-ap 8537 df-div 8628 |
This theorem is referenced by: dvfgg 14088 dvcnp2cntop 14094 dvaddxxbr 14096 dvmulxxbr 14097 dvcoapbr 14102 dvcjbr 14103 |
Copyright terms: Public domain | W3C validator |