ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvlemap GIF version

Theorem dvlemap 14080
Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvlem.1 (𝜑𝐹:𝐷⟶ℂ)
dvlem.2 (𝜑𝐷 ⊆ ℂ)
dvlem.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
dvlemap ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐷
Allowed substitution hints:   𝜑(𝑤)   𝐹(𝑤)

Proof of Theorem dvlemap
StepHypRef Expression
1 dvlem.1 . . . . 5 (𝜑𝐹:𝐷⟶ℂ)
21adantr 276 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐹:𝐷⟶ℂ)
3 elrabi 2890 . . . . 5 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} → 𝐴𝐷)
43adantl 277 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴𝐷)
52, 4ffvelcdmd 5652 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐹𝐴) ∈ ℂ)
6 dvlem.3 . . . . 5 (𝜑𝐵𝐷)
76adantr 276 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐵𝐷)
82, 7ffvelcdmd 5652 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐹𝐵) ∈ ℂ)
95, 8subcld 8266 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → ((𝐹𝐴) − (𝐹𝐵)) ∈ ℂ)
10 dvlem.2 . . . . 5 (𝜑𝐷 ⊆ ℂ)
1110adantr 276 . . . 4 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐷 ⊆ ℂ)
1211, 4sseldd 3156 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴 ∈ ℂ)
1310, 6sseldd 3156 . . . 4 (𝜑𝐵 ∈ ℂ)
1413adantr 276 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐵 ∈ ℂ)
1512, 14subcld 8266 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐴𝐵) ∈ ℂ)
16 breq1 4006 . . . . . 6 (𝑤 = 𝐴 → (𝑤 # 𝐵𝐴 # 𝐵))
1716elrab 2893 . . . . 5 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} ↔ (𝐴𝐷𝐴 # 𝐵))
1817simprbi 275 . . . 4 (𝐴 ∈ {𝑤𝐷𝑤 # 𝐵} → 𝐴 # 𝐵)
1918adantl 277 . . 3 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → 𝐴 # 𝐵)
2012, 14, 19subap0d 8599 . 2 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (𝐴𝐵) # 0)
219, 15, 20divclapd 8745 1 ((𝜑𝐴 ∈ {𝑤𝐷𝑤 # 𝐵}) → (((𝐹𝐴) − (𝐹𝐵)) / (𝐴𝐵)) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  {crab 2459  wss 3129   class class class wbr 4003  wf 5212  cfv 5216  (class class class)co 5874  cc 7808  cmin 8126   # cap 8536   / cdiv 8627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628
This theorem is referenced by:  dvfgg  14088  dvcnp2cntop  14094  dvaddxxbr  14096  dvmulxxbr  14097  dvcoapbr  14102  dvcjbr  14103
  Copyright terms: Public domain W3C validator