| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seq3caopr3 | Unicode version | ||
| Description: Lemma for seq3caopr2 10585. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.) | 
| Ref | Expression | 
|---|---|
| seq3caopr3.1 | 
 | 
| seq3caopr3.2 | 
 | 
| seq3caopr3.3 | 
 | 
| seq3caopr3.4 | 
 | 
| seq3caopr3.5 | 
 | 
| seq3caopr3.6 | 
 | 
| seq3caopr3.7 | 
 | 
| Ref | Expression | 
|---|---|
| seq3caopr3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | seq3caopr3.3 | 
. . 3
 | |
| 2 | eluzfz2 10107 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | fveq2 5558 | 
. . . . 5
 | |
| 5 | fveq2 5558 | 
. . . . . 6
 | |
| 6 | fveq2 5558 | 
. . . . . 6
 | |
| 7 | 5, 6 | oveq12d 5940 | 
. . . . 5
 | 
| 8 | 4, 7 | eqeq12d 2211 | 
. . . 4
 | 
| 9 | 8 | imbi2d 230 | 
. . 3
 | 
| 10 | fveq2 5558 | 
. . . . 5
 | |
| 11 | fveq2 5558 | 
. . . . . 6
 | |
| 12 | fveq2 5558 | 
. . . . . 6
 | |
| 13 | 11, 12 | oveq12d 5940 | 
. . . . 5
 | 
| 14 | 10, 13 | eqeq12d 2211 | 
. . . 4
 | 
| 15 | 14 | imbi2d 230 | 
. . 3
 | 
| 16 | fveq2 5558 | 
. . . . 5
 | |
| 17 | fveq2 5558 | 
. . . . . 6
 | |
| 18 | fveq2 5558 | 
. . . . . 6
 | |
| 19 | 17, 18 | oveq12d 5940 | 
. . . . 5
 | 
| 20 | 16, 19 | eqeq12d 2211 | 
. . . 4
 | 
| 21 | 20 | imbi2d 230 | 
. . 3
 | 
| 22 | fveq2 5558 | 
. . . . 5
 | |
| 23 | fveq2 5558 | 
. . . . . 6
 | |
| 24 | fveq2 5558 | 
. . . . . 6
 | |
| 25 | 23, 24 | oveq12d 5940 | 
. . . . 5
 | 
| 26 | 22, 25 | eqeq12d 2211 | 
. . . 4
 | 
| 27 | 26 | imbi2d 230 | 
. . 3
 | 
| 28 | fveq2 5558 | 
. . . . . . 7
 | |
| 29 | fveq2 5558 | 
. . . . . . . 8
 | |
| 30 | fveq2 5558 | 
. . . . . . . 8
 | |
| 31 | 29, 30 | oveq12d 5940 | 
. . . . . . 7
 | 
| 32 | 28, 31 | eqeq12d 2211 | 
. . . . . 6
 | 
| 33 | seq3caopr3.6 | 
. . . . . . 7
 | |
| 34 | 33 | ralrimiva 2570 | 
. . . . . 6
 | 
| 35 | eluzel2 9606 | 
. . . . . . . 8
 | |
| 36 | 1, 35 | syl 14 | 
. . . . . . 7
 | 
| 37 | uzid 9615 | 
. . . . . . 7
 | |
| 38 | 36, 37 | syl 14 | 
. . . . . 6
 | 
| 39 | 32, 34, 38 | rspcdva 2873 | 
. . . . 5
 | 
| 40 | seq3caopr3.2 | 
. . . . . . . . . . . 12
 | |
| 41 | 40 | ralrimivva 2579 | 
. . . . . . . . . . 11
 | 
| 42 | 41 | adantr 276 | 
. . . . . . . . . 10
 | 
| 43 | seq3caopr3.4 | 
. . . . . . . . . . 11
 | |
| 44 | seq3caopr3.5 | 
. . . . . . . . . . 11
 | |
| 45 | oveq1 5929 | 
. . . . . . . . . . . . 13
 | |
| 46 | 45 | eleq1d 2265 | 
. . . . . . . . . . . 12
 | 
| 47 | oveq2 5930 | 
. . . . . . . . . . . . 13
 | |
| 48 | 47 | eleq1d 2265 | 
. . . . . . . . . . . 12
 | 
| 49 | 46, 48 | rspc2v 2881 | 
. . . . . . . . . . 11
 | 
| 50 | 43, 44, 49 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 51 | 42, 50 | mpd 13 | 
. . . . . . . . 9
 | 
| 52 | 33, 51 | eqeltrd 2273 | 
. . . . . . . 8
 | 
| 53 | 52 | ralrimiva 2570 | 
. . . . . . 7
 | 
| 54 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 55 | 54 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 56 | 55 | rspcv 2864 | 
. . . . . . 7
 | 
| 57 | 53, 56 | mpan9 281 | 
. . . . . 6
 | 
| 58 | seq3caopr3.1 | 
. . . . . 6
 | |
| 59 | 36, 57, 58 | seq3-1 10554 | 
. . . . 5
 | 
| 60 | 43 | ralrimiva 2570 | 
. . . . . . . 8
 | 
| 61 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 62 | 61 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 63 | 62 | rspcv 2864 | 
. . . . . . . 8
 | 
| 64 | 60, 63 | mpan9 281 | 
. . . . . . 7
 | 
| 65 | 36, 64, 58 | seq3-1 10554 | 
. . . . . 6
 | 
| 66 | 44 | ralrimiva 2570 | 
. . . . . . . 8
 | 
| 67 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 68 | 67 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 69 | 68 | rspcv 2864 | 
. . . . . . . 8
 | 
| 70 | 66, 69 | mpan9 281 | 
. . . . . . 7
 | 
| 71 | 36, 70, 58 | seq3-1 10554 | 
. . . . . 6
 | 
| 72 | 65, 71 | oveq12d 5940 | 
. . . . 5
 | 
| 73 | 39, 59, 72 | 3eqtr4d 2239 | 
. . . 4
 | 
| 74 | 73 | a1i 9 | 
. . 3
 | 
| 75 | oveq1 5929 | 
. . . . . 6
 | |
| 76 | elfzouz 10226 | 
. . . . . . . . 9
 | |
| 77 | 76 | adantl 277 | 
. . . . . . . 8
 | 
| 78 | 57 | adantlr 477 | 
. . . . . . . 8
 | 
| 79 | 58 | adantlr 477 | 
. . . . . . . 8
 | 
| 80 | 77, 78, 79 | seq3p1 10557 | 
. . . . . . 7
 | 
| 81 | seq3caopr3.7 | 
. . . . . . . 8
 | |
| 82 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 83 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 84 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 85 | 83, 84 | oveq12d 5940 | 
. . . . . . . . . . 11
 | 
| 86 | 82, 85 | eqeq12d 2211 | 
. . . . . . . . . 10
 | 
| 87 | 34 | adantr 276 | 
. . . . . . . . . 10
 | 
| 88 | fzofzp1 10303 | 
. . . . . . . . . . . 12
 | |
| 89 | elfzuz 10096 | 
. . . . . . . . . . . 12
 | |
| 90 | 88, 89 | syl 14 | 
. . . . . . . . . . 11
 | 
| 91 | 90 | adantl 277 | 
. . . . . . . . . 10
 | 
| 92 | 86, 87, 91 | rspcdva 2873 | 
. . . . . . . . 9
 | 
| 93 | 92 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 94 | 64 | adantlr 477 | 
. . . . . . . . . 10
 | 
| 95 | 77, 94, 79 | seq3p1 10557 | 
. . . . . . . . 9
 | 
| 96 | 70 | adantlr 477 | 
. . . . . . . . . 10
 | 
| 97 | 77, 96, 79 | seq3p1 10557 | 
. . . . . . . . 9
 | 
| 98 | 95, 97 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 99 | 81, 93, 98 | 3eqtr4rd 2240 | 
. . . . . . 7
 | 
| 100 | 80, 99 | eqeq12d 2211 | 
. . . . . 6
 | 
| 101 | 75, 100 | imbitrrid 156 | 
. . . . 5
 | 
| 102 | 101 | expcom 116 | 
. . . 4
 | 
| 103 | 102 | a2d 26 | 
. . 3
 | 
| 104 | 9, 15, 21, 27, 74, 103 | fzind2 10315 | 
. 2
 | 
| 105 | 3, 104 | mpcom 36 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 df-seqfrec 10540 | 
| This theorem is referenced by: seq3caopr2 10585 | 
| Copyright terms: Public domain | W3C validator |