| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3caopr3 | Unicode version | ||
| Description: Lemma for seq3caopr2 10660. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.) |
| Ref | Expression |
|---|---|
| seq3caopr3.1 |
|
| seq3caopr3.2 |
|
| seq3caopr3.3 |
|
| seq3caopr3.4 |
|
| seq3caopr3.5 |
|
| seq3caopr3.6 |
|
| seq3caopr3.7 |
|
| Ref | Expression |
|---|---|
| seq3caopr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3caopr3.3 |
. . 3
| |
| 2 | eluzfz2 10174 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | fveq2 5589 |
. . . . 5
| |
| 5 | fveq2 5589 |
. . . . . 6
| |
| 6 | fveq2 5589 |
. . . . . 6
| |
| 7 | 5, 6 | oveq12d 5975 |
. . . . 5
|
| 8 | 4, 7 | eqeq12d 2221 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | fveq2 5589 |
. . . . 5
| |
| 11 | fveq2 5589 |
. . . . . 6
| |
| 12 | fveq2 5589 |
. . . . . 6
| |
| 13 | 11, 12 | oveq12d 5975 |
. . . . 5
|
| 14 | 10, 13 | eqeq12d 2221 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | fveq2 5589 |
. . . . 5
| |
| 17 | fveq2 5589 |
. . . . . 6
| |
| 18 | fveq2 5589 |
. . . . . 6
| |
| 19 | 17, 18 | oveq12d 5975 |
. . . . 5
|
| 20 | 16, 19 | eqeq12d 2221 |
. . . 4
|
| 21 | 20 | imbi2d 230 |
. . 3
|
| 22 | fveq2 5589 |
. . . . 5
| |
| 23 | fveq2 5589 |
. . . . . 6
| |
| 24 | fveq2 5589 |
. . . . . 6
| |
| 25 | 23, 24 | oveq12d 5975 |
. . . . 5
|
| 26 | 22, 25 | eqeq12d 2221 |
. . . 4
|
| 27 | 26 | imbi2d 230 |
. . 3
|
| 28 | fveq2 5589 |
. . . . . . 7
| |
| 29 | fveq2 5589 |
. . . . . . . 8
| |
| 30 | fveq2 5589 |
. . . . . . . 8
| |
| 31 | 29, 30 | oveq12d 5975 |
. . . . . . 7
|
| 32 | 28, 31 | eqeq12d 2221 |
. . . . . 6
|
| 33 | seq3caopr3.6 |
. . . . . . 7
| |
| 34 | 33 | ralrimiva 2580 |
. . . . . 6
|
| 35 | eluzel2 9673 |
. . . . . . . 8
| |
| 36 | 1, 35 | syl 14 |
. . . . . . 7
|
| 37 | uzid 9682 |
. . . . . . 7
| |
| 38 | 36, 37 | syl 14 |
. . . . . 6
|
| 39 | 32, 34, 38 | rspcdva 2886 |
. . . . 5
|
| 40 | seq3caopr3.2 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ralrimivva 2589 |
. . . . . . . . . . 11
|
| 42 | 41 | adantr 276 |
. . . . . . . . . 10
|
| 43 | seq3caopr3.4 |
. . . . . . . . . . 11
| |
| 44 | seq3caopr3.5 |
. . . . . . . . . . 11
| |
| 45 | oveq1 5964 |
. . . . . . . . . . . . 13
| |
| 46 | 45 | eleq1d 2275 |
. . . . . . . . . . . 12
|
| 47 | oveq2 5965 |
. . . . . . . . . . . . 13
| |
| 48 | 47 | eleq1d 2275 |
. . . . . . . . . . . 12
|
| 49 | 46, 48 | rspc2v 2894 |
. . . . . . . . . . 11
|
| 50 | 43, 44, 49 | syl2anc 411 |
. . . . . . . . . 10
|
| 51 | 42, 50 | mpd 13 |
. . . . . . . . 9
|
| 52 | 33, 51 | eqeltrd 2283 |
. . . . . . . 8
|
| 53 | 52 | ralrimiva 2580 |
. . . . . . 7
|
| 54 | fveq2 5589 |
. . . . . . . . 9
| |
| 55 | 54 | eleq1d 2275 |
. . . . . . . 8
|
| 56 | 55 | rspcv 2877 |
. . . . . . 7
|
| 57 | 53, 56 | mpan9 281 |
. . . . . 6
|
| 58 | seq3caopr3.1 |
. . . . . 6
| |
| 59 | 36, 57, 58 | seq3-1 10629 |
. . . . 5
|
| 60 | 43 | ralrimiva 2580 |
. . . . . . . 8
|
| 61 | fveq2 5589 |
. . . . . . . . . 10
| |
| 62 | 61 | eleq1d 2275 |
. . . . . . . . 9
|
| 63 | 62 | rspcv 2877 |
. . . . . . . 8
|
| 64 | 60, 63 | mpan9 281 |
. . . . . . 7
|
| 65 | 36, 64, 58 | seq3-1 10629 |
. . . . . 6
|
| 66 | 44 | ralrimiva 2580 |
. . . . . . . 8
|
| 67 | fveq2 5589 |
. . . . . . . . . 10
| |
| 68 | 67 | eleq1d 2275 |
. . . . . . . . 9
|
| 69 | 68 | rspcv 2877 |
. . . . . . . 8
|
| 70 | 66, 69 | mpan9 281 |
. . . . . . 7
|
| 71 | 36, 70, 58 | seq3-1 10629 |
. . . . . 6
|
| 72 | 65, 71 | oveq12d 5975 |
. . . . 5
|
| 73 | 39, 59, 72 | 3eqtr4d 2249 |
. . . 4
|
| 74 | 73 | a1i 9 |
. . 3
|
| 75 | oveq1 5964 |
. . . . . 6
| |
| 76 | elfzouz 10293 |
. . . . . . . . 9
| |
| 77 | 76 | adantl 277 |
. . . . . . . 8
|
| 78 | 57 | adantlr 477 |
. . . . . . . 8
|
| 79 | 58 | adantlr 477 |
. . . . . . . 8
|
| 80 | 77, 78, 79 | seq3p1 10632 |
. . . . . . 7
|
| 81 | seq3caopr3.7 |
. . . . . . . 8
| |
| 82 | fveq2 5589 |
. . . . . . . . . . 11
| |
| 83 | fveq2 5589 |
. . . . . . . . . . . 12
| |
| 84 | fveq2 5589 |
. . . . . . . . . . . 12
| |
| 85 | 83, 84 | oveq12d 5975 |
. . . . . . . . . . 11
|
| 86 | 82, 85 | eqeq12d 2221 |
. . . . . . . . . 10
|
| 87 | 34 | adantr 276 |
. . . . . . . . . 10
|
| 88 | fzofzp1 10378 |
. . . . . . . . . . . 12
| |
| 89 | elfzuz 10163 |
. . . . . . . . . . . 12
| |
| 90 | 88, 89 | syl 14 |
. . . . . . . . . . 11
|
| 91 | 90 | adantl 277 |
. . . . . . . . . 10
|
| 92 | 86, 87, 91 | rspcdva 2886 |
. . . . . . . . 9
|
| 93 | 92 | oveq2d 5973 |
. . . . . . . 8
|
| 94 | 64 | adantlr 477 |
. . . . . . . . . 10
|
| 95 | 77, 94, 79 | seq3p1 10632 |
. . . . . . . . 9
|
| 96 | 70 | adantlr 477 |
. . . . . . . . . 10
|
| 97 | 77, 96, 79 | seq3p1 10632 |
. . . . . . . . 9
|
| 98 | 95, 97 | oveq12d 5975 |
. . . . . . . 8
|
| 99 | 81, 93, 98 | 3eqtr4rd 2250 |
. . . . . . 7
|
| 100 | 80, 99 | eqeq12d 2221 |
. . . . . 6
|
| 101 | 75, 100 | imbitrrid 156 |
. . . . 5
|
| 102 | 101 | expcom 116 |
. . . 4
|
| 103 | 102 | a2d 26 |
. . 3
|
| 104 | 9, 15, 21, 27, 74, 103 | fzind2 10390 |
. 2
|
| 105 | 3, 104 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 df-fzo 10285 df-seqfrec 10615 |
| This theorem is referenced by: seq3caopr2 10660 |
| Copyright terms: Public domain | W3C validator |