ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3caopr3 Unicode version

Theorem seq3caopr3 10254
Description: Lemma for seq3caopr2 10255. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
Hypotheses
Ref Expression
seqcaopr3.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr3.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
seqcaopr3.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3caopr3.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
seq3caopr3.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
seq3caopr3.6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
seqcaopr3.7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
Assertion
Ref Expression
seq3caopr3  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Distinct variable groups:    .+ , n, x, y    k, F, n, x, y    k, G, n, x, y    k, H, n, x, y    k, M, n, x, y    k, N, n, x, y    Q, k, n, x, y    S, k, n, x, y    ph, k, n, x, y
Allowed substitution hint:    .+ ( k)

Proof of Theorem seq3caopr3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 seqcaopr3.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9812 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5421 . . . . 5  |-  ( z  =  M  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  M
) )
5 fveq2 5421 . . . . . 6  |-  ( z  =  M  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  M
) )
6 fveq2 5421 . . . . . 6  |-  ( z  =  M  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  M
) )
75, 6oveq12d 5792 . . . . 5  |-  ( z  =  M  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 M ) Q (  seq M ( 
.+  ,  G ) `
 M ) ) )
84, 7eqeq12d 2154 . . . 4  |-  ( z  =  M  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  M
)  =  ( (  seq M (  .+  ,  F ) `  M
) Q (  seq M (  .+  ,  G ) `  M
) ) ) )
98imbi2d 229 . . 3  |-  ( z  =  M  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) ) ) )
10 fveq2 5421 . . . . 5  |-  ( z  =  n  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  n
) )
11 fveq2 5421 . . . . . 6  |-  ( z  =  n  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  n
) )
12 fveq2 5421 . . . . . 6  |-  ( z  =  n  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  n
) )
1311, 12oveq12d 5792 . . . . 5  |-  ( z  =  n  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 n ) Q (  seq M ( 
.+  ,  G ) `
 n ) ) )
1410, 13eqeq12d 2154 . . . 4  |-  ( z  =  n  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) ) ) )
1514imbi2d 229 . . 3  |-  ( z  =  n  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 n )  =  ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
) ) ) )
16 fveq2 5421 . . . . 5  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  (
n  +  1 ) ) )
17 fveq2 5421 . . . . . 6  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) )
18 fveq2 5421 . . . . . 6  |-  ( z  =  ( n  + 
1 )  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )
1917, 18oveq12d 5792 . . . . 5  |-  ( z  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 ( n  + 
1 ) ) Q (  seq M ( 
.+  ,  G ) `
 ( n  + 
1 ) ) ) )
2016, 19eqeq12d 2154 . . . 4  |-  ( z  =  ( n  + 
1 )  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
2120imbi2d 229 . . 3  |-  ( z  =  ( n  + 
1 )  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 ( n  + 
1 ) )  =  ( (  seq M
(  .+  ,  F
) `  ( n  +  1 ) ) Q (  seq M
(  .+  ,  G
) `  ( n  +  1 ) ) ) ) ) )
22 fveq2 5421 . . . . 5  |-  ( z  =  N  ->  (  seq M (  .+  ,  H ) `  z
)  =  (  seq M (  .+  ,  H ) `  N
) )
23 fveq2 5421 . . . . . 6  |-  ( z  =  N  ->  (  seq M (  .+  ,  F ) `  z
)  =  (  seq M (  .+  ,  F ) `  N
) )
24 fveq2 5421 . . . . . 6  |-  ( z  =  N  ->  (  seq M (  .+  ,  G ) `  z
)  =  (  seq M (  .+  ,  G ) `  N
) )
2523, 24oveq12d 5792 . . . . 5  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  =  ( (  seq M ( 
.+  ,  F ) `
 N ) Q (  seq M ( 
.+  ,  G ) `
 N ) ) )
2622, 25eqeq12d 2154 . . . 4  |-  ( z  =  N  ->  (
(  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) )  <->  (  seq M (  .+  ,  H ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  N
) Q (  seq M (  .+  ,  G ) `  N
) ) ) )
2726imbi2d 229 . . 3  |-  ( z  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  H ) `  z
)  =  ( (  seq M (  .+  ,  F ) `  z
) Q (  seq M (  .+  ,  G ) `  z
) ) )  <->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) ) ) )
28 fveq2 5421 . . . . . . 7  |-  ( k  =  M  ->  ( H `  k )  =  ( H `  M ) )
29 fveq2 5421 . . . . . . . 8  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
30 fveq2 5421 . . . . . . . 8  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
3129, 30oveq12d 5792 . . . . . . 7  |-  ( k  =  M  ->  (
( F `  k
) Q ( G `
 k ) )  =  ( ( F `
 M ) Q ( G `  M
) ) )
3228, 31eqeq12d 2154 . . . . . 6  |-  ( k  =  M  ->  (
( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) )  <->  ( H `  M )  =  ( ( F `  M
) Q ( G `
 M ) ) ) )
33 seq3caopr3.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
3433ralrimiva 2505 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( H `  k )  =  ( ( F `
 k ) Q ( G `  k
) ) )
35 eluzel2 9331 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
37 uzid 9340 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
3836, 37syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
3932, 34, 38rspcdva 2794 . . . . 5  |-  ( ph  ->  ( H `  M
)  =  ( ( F `  M ) Q ( G `  M ) ) )
40 seqcaopr3.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
4140ralrimivva 2514 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x Q y )  e.  S )
4241adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A. x  e.  S  A. y  e.  S  ( x Q y )  e.  S )
43 seq3caopr3.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
44 seq3caopr3.5 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
45 oveq1 5781 . . . . . . . . . . . . 13  |-  ( x  =  ( F `  k )  ->  (
x Q y )  =  ( ( F `
 k ) Q y ) )
4645eleq1d 2208 . . . . . . . . . . . 12  |-  ( x  =  ( F `  k )  ->  (
( x Q y )  e.  S  <->  ( ( F `  k ) Q y )  e.  S ) )
47 oveq2 5782 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  k )  ->  (
( F `  k
) Q y )  =  ( ( F `
 k ) Q ( G `  k
) ) )
4847eleq1d 2208 . . . . . . . . . . . 12  |-  ( y  =  ( G `  k )  ->  (
( ( F `  k ) Q y )  e.  S  <->  ( ( F `  k ) Q ( G `  k ) )  e.  S ) )
4946, 48rspc2v 2802 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  e.  S  /\  ( G `  k )  e.  S )  -> 
( A. x  e.  S  A. y  e.  S  ( x Q y )  e.  S  ->  ( ( F `  k ) Q ( G `  k ) )  e.  S ) )
5043, 44, 49syl2anc 408 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( A. x  e.  S  A. y  e.  S  (
x Q y )  e.  S  ->  (
( F `  k
) Q ( G `
 k ) )  e.  S ) )
5142, 50mpd 13 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k ) Q ( G `  k ) )  e.  S )
5233, 51eqeltrd 2216 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  e.  S
)
5352ralrimiva 2505 . . . . . . 7  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( H `  k )  e.  S )
54 fveq2 5421 . . . . . . . . 9  |-  ( k  =  x  ->  ( H `  k )  =  ( H `  x ) )
5554eleq1d 2208 . . . . . . . 8  |-  ( k  =  x  ->  (
( H `  k
)  e.  S  <->  ( H `  x )  e.  S
) )
5655rspcv 2785 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( H `
 k )  e.  S  ->  ( H `  x )  e.  S
) )
5753, 56mpan9 279 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
58 seqcaopr3.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
5936, 57, 58seq3-1 10233 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( H `  M
) )
6043ralrimiva 2505 . . . . . . . 8  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  S )
61 fveq2 5421 . . . . . . . . . 10  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
6261eleq1d 2208 . . . . . . . . 9  |-  ( k  =  x  ->  (
( F `  k
)  e.  S  <->  ( F `  x )  e.  S
) )
6362rspcv 2785 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( F `
 k )  e.  S  ->  ( F `  x )  e.  S
) )
6460, 63mpan9 279 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6536, 64, 58seq3-1 10233 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
6644ralrimiva 2505 . . . . . . . 8  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( G `  k )  e.  S )
67 fveq2 5421 . . . . . . . . . 10  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
6867eleq1d 2208 . . . . . . . . 9  |-  ( k  =  x  ->  (
( G `  k
)  e.  S  <->  ( G `  x )  e.  S
) )
6968rspcv 2785 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) ( G `
 k )  e.  S  ->  ( G `  x )  e.  S
) )
7066, 69mpan9 279 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
7136, 70, 58seq3-1 10233 . . . . . 6  |-  ( ph  ->  (  seq M ( 
.+  ,  G ) `
 M )  =  ( G `  M
) )
7265, 71oveq12d 5792 . . . . 5  |-  ( ph  ->  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
)  =  ( ( F `  M ) Q ( G `  M ) ) )
7339, 59, 723eqtr4d 2182 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) )
7473a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 M )  =  ( (  seq M
(  .+  ,  F
) `  M ) Q (  seq M
(  .+  ,  G
) `  M )
) ) )
75 oveq1 5781 . . . . . 6  |-  ( (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (
(  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) ) )
76 elfzouz 9928 . . . . . . . . 9  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
7776adantl 275 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
7857adantlr 468 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( H `  x )  e.  S
)
7958adantlr 468 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8077, 78, 79seq3p1 10235 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  H
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) ) )
81 seqcaopr3.7 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
82 fveq2 5421 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  ( H `  k )  =  ( H `  ( n  +  1
) ) )
83 fveq2 5421 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
84 fveq2 5421 . . . . . . . . . . . 12  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
8583, 84oveq12d 5792 . . . . . . . . . . 11  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
) Q ( G `
 k ) )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) )
8682, 85eqeq12d 2154 . . . . . . . . . 10  |-  ( k  =  ( n  + 
1 )  ->  (
( H `  k
)  =  ( ( F `  k ) Q ( G `  k ) )  <->  ( H `  ( n  +  1 ) )  =  ( ( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) ) )
8734adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. k  e.  (
ZZ>= `  M ) ( H `  k )  =  ( ( F `
 k ) Q ( G `  k
) ) )
88 fzofzp1 10004 . . . . . . . . . . . 12  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
89 elfzuz 9802 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  (
n  +  1 )  e.  ( ZZ>= `  M
) )
9088, 89syl 14 . . . . . . . . . . 11  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
9190adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( n  + 
1 )  e.  (
ZZ>= `  M ) )
9286, 87, 91rspcdva 2794 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( H `  ( n  +  1
) )  =  ( ( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )
9392oveq2d 5790 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n ) Q (  seq M ( 
.+  ,  G ) `
 n ) ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) ) )
9464adantlr 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
9577, 94, 79seq3p1 10235 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
9670adantlr 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
9777, 96, 79seq3p1 10235 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  ( n  +  1 ) )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
9895, 97oveq12d 5792 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  ( G `  ( n  +  1 ) ) ) ) )
9981, 93, 983eqtr4rd 2183 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( H `  ( n  +  1 ) ) ) )
10080, 99eqeq12d 2154 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) )  <->  ( (  seq M (  .+  ,  H ) `  n
)  .+  ( H `  ( n  +  1 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  ( H `  ( n  +  1 ) ) ) ) )
10175, 100syl5ibr 155 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( (  seq M (  .+  ,  H ) `  n
)  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) )
102101expcom 115 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  H
) `  n )  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
103102a2d 26 . . 3  |-  ( n  e.  ( M..^ N
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  H
) `  n )  =  ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) ) )  -> 
( ph  ->  (  seq M (  .+  ,  H ) `  (
n  +  1 ) )  =  ( (  seq M (  .+  ,  F ) `  (
n  +  1 ) ) Q (  seq M (  .+  ,  G ) `  (
n  +  1 ) ) ) ) ) )
1049, 15, 21, 27, 74, 103fzind2 10016 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (  seq M
(  .+  ,  H
) `  N )  =  ( (  seq M (  .+  ,  F ) `  N
) Q (  seq M (  .+  ,  G ) `  N
) ) ) )
1053, 104mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   ` cfv 5123  (class class class)co 5774   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790  ..^cfzo 9919    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920  df-seqfrec 10219
This theorem is referenced by:  seq3caopr2  10255
  Copyright terms: Public domain W3C validator