| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elincfzoext | Unicode version | ||
| Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.) |
| Ref | Expression |
|---|---|
| elincfzoext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzole1 10260 |
. . . 4
| |
| 2 | elfzoelz 10251 |
. . . . . . . . 9
| |
| 3 | 2 | zred 9477 |
. . . . . . . 8
|
| 4 | 3 | adantr 276 |
. . . . . . 7
|
| 5 | nn0addge1 9323 |
. . . . . . 7
| |
| 6 | 4, 5 | sylan 283 |
. . . . . 6
|
| 7 | elfzoel1 10249 |
. . . . . . . . . . . 12
| |
| 8 | 7 | zred 9477 |
. . . . . . . . . . 11
|
| 9 | 8 | adantr 276 |
. . . . . . . . . 10
|
| 10 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 11 | nn0re 9286 |
. . . . . . . . . . . 12
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . . 11
|
| 13 | 10, 12 | readdcld 8084 |
. . . . . . . . . 10
|
| 14 | letr 8137 |
. . . . . . . . . 10
| |
| 15 | 9, 10, 13, 14 | syl3anc 1249 |
. . . . . . . . 9
|
| 16 | 15 | exp4b 367 |
. . . . . . . 8
|
| 17 | 16 | com23 78 |
. . . . . . 7
|
| 18 | 17 | imp31 256 |
. . . . . 6
|
| 19 | 6, 18 | mpd 13 |
. . . . 5
|
| 20 | 19 | exp31 364 |
. . . 4
|
| 21 | 1, 20 | mpd 13 |
. . 3
|
| 22 | 21 | imp 124 |
. 2
|
| 23 | elfzoel2 10250 |
. . . . 5
| |
| 24 | 23 | zred 9477 |
. . . 4
|
| 25 | 24 | adantr 276 |
. . 3
|
| 26 | elfzolt2 10261 |
. . . 4
| |
| 27 | 26 | adantr 276 |
. . 3
|
| 28 | 10, 25, 12, 27 | ltadd1dd 8611 |
. 2
|
| 29 | 2 | adantr 276 |
. . . 4
|
| 30 | nn0z 9374 |
. . . . 5
| |
| 31 | 30 | adantl 277 |
. . . 4
|
| 32 | 29, 31 | zaddcld 9481 |
. . 3
|
| 33 | 7 | adantr 276 |
. . 3
|
| 34 | 23 | adantr 276 |
. . . 4
|
| 35 | 34, 31 | zaddcld 9481 |
. . 3
|
| 36 | elfzo 10253 |
. . 3
| |
| 37 | 32, 33, 35, 36 | syl3anc 1249 |
. 2
|
| 38 | 22, 28, 37 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 df-fzo 10247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |