ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elincfzoext GIF version

Theorem elincfzoext 10344
Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elincfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elincfzoext
StepHypRef Expression
1 elfzole1 10298 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑀𝑍)
2 elfzoelz 10289 . . . . . . . . 9 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℤ)
32zred 9515 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 ∈ ℝ)
43adantr 276 . . . . . . 7 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) → 𝑍 ∈ ℝ)
5 nn0addge1 9361 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
64, 5sylan 283 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑍 ≤ (𝑍 + 𝐼))
7 elfzoel1 10287 . . . . . . . . . . . 12 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
87zred 9515 . . . . . . . . . . 11 (𝑍 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℝ)
98adantr 276 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
103adantr 276 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℝ)
11 nn0re 9324 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1211adantl 277 . . . . . . . . . . 11 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
1310, 12readdcld 8122 . . . . . . . . . 10 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℝ)
14 letr 8175 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ (𝑍 + 𝐼) ∈ ℝ) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
159, 10, 13, 14syl3anc 1250 . . . . . . . . 9 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑀𝑍𝑍 ≤ (𝑍 + 𝐼)) → 𝑀 ≤ (𝑍 + 𝐼)))
1615exp4b 367 . . . . . . . 8 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0 → (𝑀𝑍 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1716com23 78 . . . . . . 7 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0 → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))))
1817imp31 256 . . . . . 6 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → (𝑍 ≤ (𝑍 + 𝐼) → 𝑀 ≤ (𝑍 + 𝐼)))
196, 18mpd 13 . . . . 5 (((𝑍 ∈ (𝑀..^𝑁) ∧ 𝑀𝑍) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
2019exp31 364 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → (𝑀𝑍 → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼))))
211, 20mpd 13 . . 3 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑀 ≤ (𝑍 + 𝐼)))
2221imp 124 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ≤ (𝑍 + 𝐼))
23 elfzoel2 10288 . . . . 5 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2423zred 9515 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℝ)
2524adantr 276 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
26 elfzolt2 10299 . . . 4 (𝑍 ∈ (𝑀..^𝑁) → 𝑍 < 𝑁)
2726adantr 276 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 < 𝑁)
2810, 25, 12, 27ltadd1dd 8649 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) < (𝑁 + 𝐼))
292adantr 276 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ ℤ)
30 nn0z 9412 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
3130adantl 277 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℤ)
3229, 31zaddcld 9519 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ ℤ)
337adantr 276 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℤ)
3423adantr 276 . . . 4 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℤ)
3534, 31zaddcld 9519 . . 3 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ ℤ)
36 elfzo 10291 . . 3 (((𝑍 + 𝐼) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 𝐼) ∈ ℤ) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3732, 33, 35, 36syl3anc 1250 . 2 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → ((𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)) ↔ (𝑀 ≤ (𝑍 + 𝐼) ∧ (𝑍 + 𝐼) < (𝑁 + 𝐼))))
3822, 28, 37mpbir2and 947 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177   class class class wbr 4051  (class class class)co 5957  cr 7944   + caddc 7948   < clt 8127  cle 8128  0cn0 9315  cz 9392  ..^cfzo 10284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator