| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzsnfd | Unicode version | ||
| Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| gsumsnd.b |
|
| gsumsnd.g |
|
| gsumfzsnd.m |
|
| gsumsnd.c |
|
| gsumsnd.s |
|
| gsumsnfd.p |
|
| gsumsnfd.c |
|
| Ref | Expression |
|---|---|
| gsumfzsnfd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnfd.p |
. . . . 5
| |
| 2 | elsni 3684 |
. . . . . 6
| |
| 3 | gsumsnd.s |
. . . . . 6
| |
| 4 | 2, 3 | sylan2 286 |
. . . . 5
|
| 5 | 1, 4 | mpteq2da 4173 |
. . . 4
|
| 6 | 5 | oveq2d 6023 |
. . 3
|
| 7 | gsumfzsnd.m |
. . . . . 6
| |
| 8 | fzsn 10270 |
. . . . . 6
| |
| 9 | 7, 8 | syl 14 |
. . . . 5
|
| 10 | 9 | mpteq1d 4169 |
. . . 4
|
| 11 | 10 | oveq2d 6023 |
. . 3
|
| 12 | gsumsnd.g |
. . . 4
| |
| 13 | 7 | uzidd 9745 |
. . . 4
|
| 14 | gsumsnd.c |
. . . 4
| |
| 15 | gsumsnfd.c |
. . . . 5
| |
| 16 | gsumsnd.b |
. . . . 5
| |
| 17 | eqid 2229 |
. . . . 5
| |
| 18 | 15, 16, 17 | gsumfzconstf 13887 |
. . . 4
|
| 19 | 12, 13, 14, 18 | syl3anc 1271 |
. . 3
|
| 20 | 6, 11, 19 | 3eqtr2d 2268 |
. 2
|
| 21 | 7 | zcnd 9578 |
. . . . . 6
|
| 22 | 21 | subidd 8453 |
. . . . 5
|
| 23 | 22 | oveq1d 6022 |
. . . 4
|
| 24 | 0p1e1 9232 |
. . . 4
| |
| 25 | 23, 24 | eqtrdi 2278 |
. . 3
|
| 26 | 25 | oveq1d 6022 |
. 2
|
| 27 | 16, 17 | mulg1 13674 |
. . 3
|
| 28 | 14, 27 | syl 14 |
. 2
|
| 29 | 20, 26, 28 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-igsum 13300 df-minusg 13545 df-mulg 13665 |
| This theorem is referenced by: gsumfzfsumlemm 14559 |
| Copyright terms: Public domain | W3C validator |