ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzsnfd Unicode version

Theorem gsumfzsnfd 13553
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumsnd.b  |-  B  =  ( Base `  G
)
gsumsnd.g  |-  ( ph  ->  G  e.  Mnd )
gsumfzsnd.m  |-  ( ph  ->  M  e.  ZZ )
gsumsnd.c  |-  ( ph  ->  C  e.  B )
gsumsnd.s  |-  ( (
ph  /\  k  =  M )  ->  A  =  C )
gsumsnfd.p  |-  F/ k
ph
gsumsnfd.c  |-  F/_ k C
Assertion
Ref Expression
gsumfzsnfd  |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
Distinct variable group:    k, M
Allowed substitution hints:    ph( k)    A( k)    B( k)    C( k)    G( k)

Proof of Theorem gsumfzsnfd
StepHypRef Expression
1 gsumsnfd.p . . . . 5  |-  F/ k
ph
2 elsni 3641 . . . . . 6  |-  ( k  e.  { M }  ->  k  =  M )
3 gsumsnd.s . . . . . 6  |-  ( (
ph  /\  k  =  M )  ->  A  =  C )
42, 3sylan2 286 . . . . 5  |-  ( (
ph  /\  k  e.  { M } )  ->  A  =  C )
51, 4mpteq2da 4123 . . . 4  |-  ( ph  ->  ( k  e.  { M }  |->  A )  =  ( k  e. 
{ M }  |->  C ) )
65oveq2d 5941 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  ( G 
gsumg  ( k  e.  { M }  |->  C ) ) )
7 gsumfzsnd.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
8 fzsn 10160 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
97, 8syl 14 . . . . 5  |-  ( ph  ->  ( M ... M
)  =  { M } )
109mpteq1d 4119 . . . 4  |-  ( ph  ->  ( k  e.  ( M ... M ) 
|->  C )  =  ( k  e.  { M }  |->  C ) )
1110oveq2d 5941 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( M ... M ) 
|->  C ) )  =  ( G  gsumg  ( k  e.  { M }  |->  C ) ) )
12 gsumsnd.g . . . 4  |-  ( ph  ->  G  e.  Mnd )
137uzidd 9635 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
14 gsumsnd.c . . . 4  |-  ( ph  ->  C  e.  B )
15 gsumsnfd.c . . . . 5  |-  F/_ k C
16 gsumsnd.b . . . . 5  |-  B  =  ( Base `  G
)
17 eqid 2196 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
1815, 16, 17gsumfzconstf 13550 . . . 4  |-  ( ( G  e.  Mnd  /\  M  e.  ( ZZ>= `  M )  /\  C  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... M ) 
|->  C ) )  =  ( ( ( M  -  M )  +  1 ) (.g `  G
) C ) )
1912, 13, 14, 18syl3anc 1249 . . 3  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( M ... M ) 
|->  C ) )  =  ( ( ( M  -  M )  +  1 ) (.g `  G
) C ) )
206, 11, 193eqtr2d 2235 . 2  |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  ( ( ( M  -  M
)  +  1 ) (.g `  G ) C ) )
217zcnd 9468 . . . . . 6  |-  ( ph  ->  M  e.  CC )
2221subidd 8344 . . . . 5  |-  ( ph  ->  ( M  -  M
)  =  0 )
2322oveq1d 5940 . . . 4  |-  ( ph  ->  ( ( M  -  M )  +  1 )  =  ( 0  +  1 ) )
24 0p1e1 9123 . . . 4  |-  ( 0  +  1 )  =  1
2523, 24eqtrdi 2245 . . 3  |-  ( ph  ->  ( ( M  -  M )  +  1 )  =  1 )
2625oveq1d 5940 . 2  |-  ( ph  ->  ( ( ( M  -  M )  +  1 ) (.g `  G
) C )  =  ( 1 (.g `  G
) C ) )
2716, 17mulg1 13337 . . 3  |-  ( C  e.  B  ->  (
1 (.g `  G ) C )  =  C )
2814, 27syl 14 . 2  |-  ( ph  ->  ( 1 (.g `  G
) C )  =  C )
2920, 26, 283eqtrd 2233 1  |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1474    e. wcel 2167   F/_wnfc 2326   {csn 3623    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   0cc0 7898   1c1 7899    + caddc 7901    - cmin 8216   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102   Basecbs 12705    gsumg cgsu 12961   Mndcmnd 13120  .gcmg 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-seqfrec 10559  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-0g 12962  df-igsum 12963  df-minusg 13208  df-mulg 13328
This theorem is referenced by:  gsumfzfsumlemm  14221
  Copyright terms: Public domain W3C validator