ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ply1termlem Unicode version

Theorem ply1termlem 14888
Description: Lemma for ply1term 14889. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
Assertion
Ref Expression
ply1termlem  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A   
k, N, z
Allowed substitution hints:    F( z, k)

Proof of Theorem ply1termlem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ply1term.1 . 2  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
2 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  N  e.  NN0 )
3 nn0uz 9627 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2286 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  N  e.  (
ZZ>= `  0 ) )
5 fzss1 10129 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( N ... N )  C_  (
0 ... N ) )
64, 5syl 14 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( N ... N )  C_  (
0 ... N ) )
7 elfz1eq 10101 . . . . . . . . 9  |-  ( k  e.  ( N ... N )  ->  k  =  N )
87adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  k  =  N )
9 iftrue 3562 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  =  N ,  A ,  0 )  =  A )
108, 9syl 14 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  if ( k  =  N ,  A ,  0 )  =  A )
11 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  A  e.  CC )
1211adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  A  e.  CC )
1310, 12eqeltrd 2270 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  if ( k  =  N ,  A ,  0 )  e.  CC )
14 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  z  e.  CC )
152adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  N  e.  NN0 )
168, 15eqeltrd 2270 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  k  e.  NN0 )
1714, 16expcld 10744 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  (
z ^ k )  e.  CC )
1813, 17mulcld 8040 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  e.  CC )
19 eldifn 3282 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... N )  \ 
( N ... N
) )  ->  -.  k  e.  ( N ... N ) )
2019adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  -.  k  e.  ( N ... N
) )
212adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  N  e.  NN0 )
2221nn0zd 9437 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  N  e.  ZZ )
23 fzsn 10132 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
2423eleq2d 2263 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
k  e.  ( N ... N )  <->  k  e.  { N } ) )
25 elsn2g 3651 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
k  e.  { N } 
<->  k  =  N ) )
2624, 25bitrd 188 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
k  e.  ( N ... N )  <->  k  =  N ) )
2722, 26syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( k  e.  ( N ... N
)  <->  k  =  N ) )
2820, 27mtbid 673 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  -.  k  =  N )
2928iffalsed 3567 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  if (
k  =  N ,  A ,  0 )  =  0 )
3029oveq1d 5933 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  =  ( 0  x.  ( z ^ k
) ) )
31 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  z  e.  CC )
32 eldifi 3281 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... N )  \ 
( N ... N
) )  ->  k  e.  ( 0 ... N
) )
33 elfznn0 10180 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
3432, 33syl 14 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  \ 
( N ... N
) )  ->  k  e.  NN0 )
35 expcl 10628 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
3631, 34, 35syl2an 289 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( z ^ k )  e.  CC )
3736mul02d 8411 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( 0  x.  ( z ^
k ) )  =  0 )
3830, 37eqtrd 2226 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  =  0 )
39 elfzelz 10091 . . . . . . . 8  |-  ( w  e.  ( 0 ... N )  ->  w  e.  ZZ )
4039adantl 277 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  w  e.  ( 0 ... N
) )  ->  w  e.  ZZ )
412nn0zd 9437 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  N  e.  ZZ )
4241adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  w  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
43 fzdcel 10106 . . . . . . 7  |-  ( ( w  e.  ZZ  /\  N  e.  ZZ  /\  N  e.  ZZ )  -> DECID  w  e.  ( N ... N ) )
4440, 42, 42, 43syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  w  e.  ( 0 ... N
) )  -> DECID  w  e.  ( N ... N ) )
4544ralrimiva 2567 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  A. w  e.  ( 0 ... N )DECID  w  e.  ( N ... N ) )
46 0zd 9329 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  0  e.  ZZ )
4746, 41fzfigd 10502 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( 0 ... N )  e.  Fin )
486, 18, 38, 45, 47fisumss 11535 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( N ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )
4931, 2expcld 10744 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( z ^ N )  e.  CC )
5011, 49mulcld 8040 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( A  x.  ( z ^ N
) )  e.  CC )
51 oveq2 5926 . . . . . . 7  |-  ( k  =  N  ->  (
z ^ k )  =  ( z ^ N ) )
529, 51oveq12d 5936 . . . . . 6  |-  ( k  =  N  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  =  ( A  x.  ( z ^ N
) ) )
5352fsum1 11555 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( A  x.  (
z ^ N ) )  e.  CC )  ->  sum_ k  e.  ( N ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ N ) ) )
5441, 50, 53syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( N ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ N ) ) )
5548, 54eqtr3d 2228 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ N ) ) )
5655mpteq2dva 4119 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) ) )
571, 56eqtr4id 2245 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    \ cdif 3150    C_ wss 3153   ifcif 3557   {csn 3618    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872    x. cmul 7877   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   ^cexp 10609   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  ply1term  14889
  Copyright terms: Public domain W3C validator