ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmptfidmadd2 Unicode version

Theorem gsumfzmptfidmadd2 13746
Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmadd.b  |-  B  =  ( Base `  G
)
gsummptfidmadd.p  |-  .+  =  ( +g  `  G )
gsummptfidmadd.g  |-  ( ph  ->  G  e. CMnd )
gsumfzmptfidmadd.m  |-  ( ph  ->  M  e.  ZZ )
gsumfzmptfidmadd.n  |-  ( ph  ->  N  e.  ZZ )
gsumfzmptfidmadd.c  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  C  e.  B )
gsumfzmptfidmadd.d  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )
gsumfzmptfidmadd.f  |-  F  =  ( x  e.  ( M ... N ) 
|->  C )
gsumfzmptfidmadd.h  |-  H  =  ( x  e.  ( M ... N ) 
|->  D )
Assertion
Ref Expression
gsumfzmptfidmadd2  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )
Distinct variable groups:    x, B    ph, x    x, 
.+    x, M    x, N
Allowed substitution hints:    C( x)    D( x)    F( x)    G( x)    H( x)

Proof of Theorem gsumfzmptfidmadd2
StepHypRef Expression
1 gsumfzmptfidmadd.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
2 gsumfzmptfidmadd.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
31, 2fzfigd 10593 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  Fin )
4 gsumfzmptfidmadd.c . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  C  e.  B )
5 gsumfzmptfidmadd.d . . . 4  |-  ( (
ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )
6 gsumfzmptfidmadd.f . . . . 5  |-  F  =  ( x  e.  ( M ... N ) 
|->  C )
76a1i 9 . . . 4  |-  ( ph  ->  F  =  ( x  e.  ( M ... N )  |->  C ) )
8 gsumfzmptfidmadd.h . . . . 5  |-  H  =  ( x  e.  ( M ... N ) 
|->  D )
98a1i 9 . . . 4  |-  ( ph  ->  H  =  ( x  e.  ( M ... N )  |->  D ) )
103, 4, 5, 7, 9offval2 6186 . . 3  |-  ( ph  ->  ( F  oF  .+  H )  =  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )
1110oveq2d 5972 . 2  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C 
.+  D ) ) ) )
12 gsummptfidmadd.b . . 3  |-  B  =  ( Base `  G
)
13 gsummptfidmadd.p . . 3  |-  .+  =  ( +g  `  G )
14 gsummptfidmadd.g . . 3  |-  ( ph  ->  G  e. CMnd )
1512, 13, 14, 1, 2, 4, 5, 6, 8gsumfzmptfidmadd 13745 . 2  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N ) 
|->  ( C  .+  D
) ) )  =  ( ( G  gsumg  F ) 
.+  ( G  gsumg  H ) ) )
1611, 15eqtrd 2239 1  |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G 
gsumg  F )  .+  ( G  gsumg  H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    |-> cmpt 4112   ` cfv 5279  (class class class)co 5956    oFcof 6168   Fincfn 6839   ZZcz 9387   ...cfz 10145   Basecbs 12902   +g cplusg 12979    gsumg cgsu 13159  CMndccmn 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-igsum 13161  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-cmn 13692
This theorem is referenced by:  lgseisenlem3  15619  lgseisenlem4  15620
  Copyright terms: Public domain W3C validator