ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzconst Unicode version

Theorem gsumfzconst 13844
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
Hypotheses
Ref Expression
gsumconst.b  |-  B  =  ( Base `  G
)
gsumconst.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
gsumfzconst  |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( ( ( N  -  M )  +  1 )  .x.  X
) )
Distinct variable groups:    B, k    k, G    k, M    k, N    k, X
Allowed substitution hint:    .x. ( k)

Proof of Theorem gsumfzconst
Dummy variables  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1003 . 2  |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  N  e.  ( ZZ>= `  M )
)
2 3simpb 1000 . 2  |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G  e.  Mnd  /\  X  e.  B ) )
3 oveq2 5982 . . . . . . 7  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
43mpteq1d 4148 . . . . . 6  |-  ( w  =  M  ->  (
k  e.  ( M ... w )  |->  X )  =  ( k  e.  ( M ... M )  |->  X ) )
54oveq2d 5990 . . . . 5  |-  ( w  =  M  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( G  gsumg  ( k  e.  ( M ... M ) 
|->  X ) ) )
6 oveq1 5981 . . . . . . 7  |-  ( w  =  M  ->  (
w  -  M )  =  ( M  -  M ) )
76oveq1d 5989 . . . . . 6  |-  ( w  =  M  ->  (
( w  -  M
)  +  1 )  =  ( ( M  -  M )  +  1 ) )
87oveq1d 5989 . . . . 5  |-  ( w  =  M  ->  (
( ( w  -  M )  +  1 )  .x.  X )  =  ( ( ( M  -  M )  +  1 )  .x.  X ) )
95, 8eqeq12d 2224 . . . 4  |-  ( w  =  M  ->  (
( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
)  <->  ( G  gsumg  ( k  e.  ( M ... M )  |->  X ) )  =  ( ( ( M  -  M
)  +  1 ) 
.x.  X ) ) )
109imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ( G  e. 
Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
) )  <->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... M ) 
|->  X ) )  =  ( ( ( M  -  M )  +  1 )  .x.  X
) ) ) )
11 oveq2 5982 . . . . . . 7  |-  ( w  =  j  ->  ( M ... w )  =  ( M ... j
) )
1211mpteq1d 4148 . . . . . 6  |-  ( w  =  j  ->  (
k  e.  ( M ... w )  |->  X )  =  ( k  e.  ( M ... j )  |->  X ) )
1312oveq2d 5990 . . . . 5  |-  ( w  =  j  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( G  gsumg  ( k  e.  ( M ... j ) 
|->  X ) ) )
14 oveq1 5981 . . . . . . 7  |-  ( w  =  j  ->  (
w  -  M )  =  ( j  -  M ) )
1514oveq1d 5989 . . . . . 6  |-  ( w  =  j  ->  (
( w  -  M
)  +  1 )  =  ( ( j  -  M )  +  1 ) )
1615oveq1d 5989 . . . . 5  |-  ( w  =  j  ->  (
( ( w  -  M )  +  1 )  .x.  X )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )
1713, 16eqeq12d 2224 . . . 4  |-  ( w  =  j  ->  (
( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
)  <->  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M
)  +  1 ) 
.x.  X ) ) )
1817imbi2d 230 . . 3  |-  ( w  =  j  ->  (
( ( G  e. 
Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
) )  <->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... j ) 
|->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X
) ) ) )
19 oveq2 5982 . . . . . . 7  |-  ( w  =  ( j  +  1 )  ->  ( M ... w )  =  ( M ... (
j  +  1 ) ) )
2019mpteq1d 4148 . . . . . 6  |-  ( w  =  ( j  +  1 )  ->  (
k  e.  ( M ... w )  |->  X )  =  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )
2120oveq2d 5990 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  X ) ) )
22 oveq1 5981 . . . . . . 7  |-  ( w  =  ( j  +  1 )  ->  (
w  -  M )  =  ( ( j  +  1 )  -  M ) )
2322oveq1d 5989 . . . . . 6  |-  ( w  =  ( j  +  1 )  ->  (
( w  -  M
)  +  1 )  =  ( ( ( j  +  1 )  -  M )  +  1 ) )
2423oveq1d 5989 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (
( ( w  -  M )  +  1 )  .x.  X )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X ) )
2521, 24eqeq12d 2224 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
)  <->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )  =  ( ( ( ( j  +  1 )  -  M
)  +  1 ) 
.x.  X ) ) )
2625imbi2d 230 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ( G  e. 
Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
) )  <->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  X ) )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X
) ) ) )
27 oveq2 5982 . . . . . . 7  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
2827mpteq1d 4148 . . . . . 6  |-  ( w  =  N  ->  (
k  e.  ( M ... w )  |->  X )  =  ( k  e.  ( M ... N )  |->  X ) )
2928oveq2d 5990 . . . . 5  |-  ( w  =  N  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) ) )
30 oveq1 5981 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  M )  =  ( N  -  M ) )
3130oveq1d 5989 . . . . . 6  |-  ( w  =  N  ->  (
( w  -  M
)  +  1 )  =  ( ( N  -  M )  +  1 ) )
3231oveq1d 5989 . . . . 5  |-  ( w  =  N  ->  (
( ( w  -  M )  +  1 )  .x.  X )  =  ( ( ( N  -  M )  +  1 )  .x.  X ) )
3329, 32eqeq12d 2224 . . . 4  |-  ( w  =  N  ->  (
( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
)  <->  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M
)  +  1 ) 
.x.  X ) ) )
3433imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ( G  e. 
Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... w ) 
|->  X ) )  =  ( ( ( w  -  M )  +  1 )  .x.  X
) )  <->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( ( ( N  -  M )  +  1 )  .x.  X
) ) ) )
35 simplr 528 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  X  e.  B
)
36 gsumconst.b . . . . . . 7  |-  B  =  ( Base `  G
)
37 gsumconst.m . . . . . . 7  |-  .x.  =  (.g
`  G )
3836, 37mulg1 13632 . . . . . 6  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
3935, 38syl 14 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( 1  .x. 
X )  =  X )
40 zcn 9419 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
4140subidd 8413 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  M )  =  0 )
4241oveq1d 5989 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
( M  -  M
)  +  1 )  =  ( 0  +  1 ) )
43 0p1e1 9192 . . . . . . . 8  |-  ( 0  +  1 )  =  1
4442, 43eqtrdi 2258 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  -  M
)  +  1 )  =  1 )
4544oveq1d 5989 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ( M  -  M )  +  1 )  .x.  X )  =  ( 1  .x. 
X ) )
4645adantl 277 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( ( ( M  -  M )  +  1 )  .x.  X )  =  ( 1  .x.  X ) )
47 eqid 2209 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
48 simpll 527 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  G  e.  Mnd )
49 uzid 9704 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
5049adantl 277 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  M  e.  (
ZZ>= `  M ) )
51 simpllr 534 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  /\  k  e.  ( M ... M
) )  ->  X  e.  B )
5251fmpttd 5763 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( k  e.  ( M ... M
)  |->  X ) : ( M ... M
) --> B )
5336, 47, 48, 50, 52gsumval2 13396 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... M )  |->  X ) )  =  (  seq M ( ( +g  `  G ) ,  ( k  e.  ( M ... M )  |->  X ) ) `  M
) )
54 simpr 110 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
5554, 54fzfigd 10620 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( M ... M )  e.  Fin )
5655mptexd 5839 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( k  e.  ( M ... M
)  |->  X )  e. 
_V )
57 plusgslid 13111 . . . . . . . . 9  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
5857slotex 13025 . . . . . . . 8  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
5948, 58syl 14 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( +g  `  G
)  e.  _V )
60 seq1g 10652 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( k  e.  ( M ... M ) 
|->  X )  e.  _V  /\  ( +g  `  G
)  e.  _V )  ->  (  seq M ( ( +g  `  G
) ,  ( k  e.  ( M ... M )  |->  X ) ) `  M )  =  ( ( k  e.  ( M ... M )  |->  X ) `
 M ) )
6154, 56, 59, 60syl3anc 1252 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  (  seq M
( ( +g  `  G
) ,  ( k  e.  ( M ... M )  |->  X ) ) `  M )  =  ( ( k  e.  ( M ... M )  |->  X ) `
 M ) )
62 eqid 2209 . . . . . . 7  |-  ( k  e.  ( M ... M )  |->  X )  =  ( k  e.  ( M ... M
)  |->  X )
63 eqidd 2210 . . . . . . 7  |-  ( k  =  M  ->  X  =  X )
64 elfz3 10198 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( M ... M
) )
6564adantl 277 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  M  e.  ( M ... M ) )
6662, 63, 65, 35fvmptd3 5701 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( ( k  e.  ( M ... M )  |->  X ) `
 M )  =  X )
6753, 61, 663eqtrd 2246 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... M )  |->  X ) )  =  X )
6839, 46, 673eqtr4rd 2253 . . . 4  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  M  e.  ZZ )  ->  ( G  gsumg  ( k  e.  ( M ... M )  |->  X ) )  =  ( ( ( M  -  M
)  +  1 ) 
.x.  X ) )
6968expcom 116 . . 3  |-  ( M  e.  ZZ  ->  (
( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... M )  |->  X ) )  =  ( ( ( M  -  M
)  +  1 ) 
.x.  X ) ) )
70 fzssp1 10231 . . . . . . . . . . . . 13  |-  ( M ... j )  C_  ( M ... ( j  +  1 ) )
7170a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( M ... j )  C_  ( M ... ( j  +  1 ) ) )
7271resmptd 5032 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( (
k  e.  ( M ... ( j  +  1 ) )  |->  X )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j ) 
|->  X ) )
7372oveq2d 5990 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( G  gsumg  ( ( k  e.  ( M ... ( j  +  1 ) ) 
|->  X )  |`  ( M ... j ) ) )  =  ( G 
gsumg  ( k  e.  ( M ... j ) 
|->  X ) ) )
74 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )
7573, 74eqtrd 2242 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( G  gsumg  ( ( k  e.  ( M ... ( j  +  1 ) ) 
|->  X )  |`  ( M ... j ) ) )  =  ( ( ( j  -  M
)  +  1 ) 
.x.  X ) )
76 eqid 2209 . . . . . . . . . 10  |-  ( k  e.  ( M ... ( j  +  1 ) )  |->  X )  =  ( k  e.  ( M ... (
j  +  1 ) )  |->  X )
77 eqidd 2210 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  X  =  X )
78 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  j  e.  ( ZZ>= `  M )
)
79 peano2uz 9746 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
80 eluzfz2 10196 . . . . . . . . . . 11  |-  ( ( j  +  1 )  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( M ... (
j  +  1 ) ) )
8178, 79, 803syl 17 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( j  +  1 )  e.  ( M ... (
j  +  1 ) ) )
82 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  X  e.  B )
8376, 77, 81, 82fvmptd3 5701 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( (
k  e.  ( M ... ( j  +  1 ) )  |->  X ) `  ( j  +  1 ) )  =  X )
8475, 83oveq12d 5992 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( ( G  gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  X )  |`  ( M ... j ) ) ) ( +g  `  G ) ( ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) `  ( j  +  1 ) ) )  =  ( ( ( ( j  -  M )  +  1 )  .x.  X ) ( +g  `  G
) X ) )
85 simplll 533 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  G  e.  Mnd )
86 eluzel2 9695 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
8778, 86syl 14 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  M  e.  ZZ )
88 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  k  e.  ( M ... ( j  +  1 ) ) )  ->  X  e.  B )
8988fmpttd 5763 . . . . . . . . . 10  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  j  e.  (
ZZ>= `  M ) )  ->  ( k  e.  ( M ... (
j  +  1 ) )  |->  X ) : ( M ... (
j  +  1 ) ) --> B )
9089adantr 276 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( k  e.  ( M ... (
j  +  1 ) )  |->  X ) : ( M ... (
j  +  1 ) ) --> B )
9136, 47, 85, 87, 78, 90gsumsplit1r 13397 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )  =  ( ( G  gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  X )  |`  ( M ... j ) ) ) ( +g  `  G ) ( ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) `  ( j  +  1 ) ) ) )
92 uznn0sub 9722 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  -  M )  e.  NN0 )
93 nn0p1nn 9376 . . . . . . . . . 10  |-  ( ( j  -  M )  e.  NN0  ->  ( ( j  -  M )  +  1 )  e.  NN )
9478, 92, 933syl 17 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( (
j  -  M )  +  1 )  e.  NN )
9536, 37, 47mulgnnp1 13633 . . . . . . . . 9  |-  ( ( ( ( j  -  M )  +  1 )  e.  NN  /\  X  e.  B )  ->  ( ( ( ( j  -  M )  +  1 )  +  1 )  .x.  X
)  =  ( ( ( ( j  -  M )  +  1 )  .x.  X ) ( +g  `  G
) X ) )
9694, 82, 95syl2anc 411 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( (
( ( j  -  M )  +  1 )  +  1 ) 
.x.  X )  =  ( ( ( ( j  -  M )  +  1 )  .x.  X ) ( +g  `  G ) X ) )
9784, 91, 963eqtr4d 2252 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )  =  ( ( ( ( j  -  M )  +  1 )  +  1 )  .x.  X ) )
98 eluzelcn 9701 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  CC )
9986zcnd 9538 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  CC )
10099negcld 8412 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  -u M  e.  CC )
101 1cnd 8130 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  1  e.  CC )
10298, 100, 101add32d 8282 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
j  +  -u M
)  +  1 )  =  ( ( j  +  1 )  + 
-u M ) )
10398, 99negsubd 8431 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  -u M )  =  ( j  -  M
) )
104103oveq1d 5989 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
j  +  -u M
)  +  1 )  =  ( ( j  -  M )  +  1 ) )
10598, 101addcld 8134 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  CC )
106105, 99negsubd 8431 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
j  +  1 )  +  -u M )  =  ( ( j  +  1 )  -  M
) )
107102, 104, 1063eqtr3d 2250 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
j  -  M )  +  1 )  =  ( ( j  +  1 )  -  M
) )
108107oveq1d 5989 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
( j  -  M
)  +  1 )  +  1 )  =  ( ( ( j  +  1 )  -  M )  +  1 ) )
109108oveq1d 5989 . . . . . . . 8  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
( ( j  -  M )  +  1 )  +  1 ) 
.x.  X )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X
) )
11078, 109syl 14 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( (
( ( j  -  M )  +  1 )  +  1 ) 
.x.  X )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X
) )
11197, 110eqtrd 2242 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  X  e.  B )  /\  j  e.  ( ZZ>= `  M )
)  /\  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X ) )  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X ) )
112111ex 115 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  X  e.  B )  /\  j  e.  (
ZZ>= `  M ) )  ->  ( ( G 
gsumg  ( k  e.  ( M ... j ) 
|->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X
)  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X ) ) )
113112expcom 116 . . . 4  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  (
( G  gsumg  ( k  e.  ( M ... j ) 
|->  X ) )  =  ( ( ( j  -  M )  +  1 )  .x.  X
)  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) )  |->  X ) )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X ) ) ) )
114113a2d 26 . . 3  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( (
( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... j )  |->  X ) )  =  ( ( ( j  -  M
)  +  1 ) 
.x.  X ) )  ->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  X ) )  =  ( ( ( ( j  +  1 )  -  M )  +  1 )  .x.  X
) ) ) )
11510, 18, 26, 34, 69, 114uzind4 9751 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( G  e.  Mnd  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( ( ( N  -  M )  +  1 )  .x.  X
) ) )
1161, 2, 115sylc 62 1  |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  ( M ... N ) 
|->  X ) )  =  ( ( ( N  -  M )  +  1 )  .x.  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 983    = wceq 1375    e. wcel 2180   _Vcvv 2779    C_ wss 3177    |-> cmpt 4124    |` cres 4698   -->wf 5290   ` cfv 5294  (class class class)co 5974   Fincfn 6857   0cc0 7967   1c1 7968    + caddc 7970    - cmin 8285   -ucneg 8286   NNcn 9078   NN0cn0 9337   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172    seqcseq 10636   Basecbs 12998   +g cplusg 13076    gsumg cgsu 13256   Mndcmnd 13415  .gcmg 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-igsum 13258  df-minusg 13503  df-mulg 13623
This theorem is referenced by:  gsumfzconstf  13845  lgseisenlem4  15717
  Copyright terms: Public domain W3C validator