| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzconst | Unicode version | ||
| Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsumconst.b |
|
| gsumconst.m |
|
| Ref | Expression |
|---|---|
| gsumfzconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. 2
| |
| 2 | 3simpb 998 |
. 2
| |
| 3 | oveq2 5959 |
. . . . . . 7
| |
| 4 | 3 | mpteq1d 4133 |
. . . . . 6
|
| 5 | 4 | oveq2d 5967 |
. . . . 5
|
| 6 | oveq1 5958 |
. . . . . . 7
| |
| 7 | 6 | oveq1d 5966 |
. . . . . 6
|
| 8 | 7 | oveq1d 5966 |
. . . . 5
|
| 9 | 5, 8 | eqeq12d 2221 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | oveq2 5959 |
. . . . . . 7
| |
| 12 | 11 | mpteq1d 4133 |
. . . . . 6
|
| 13 | 12 | oveq2d 5967 |
. . . . 5
|
| 14 | oveq1 5958 |
. . . . . . 7
| |
| 15 | 14 | oveq1d 5966 |
. . . . . 6
|
| 16 | 15 | oveq1d 5966 |
. . . . 5
|
| 17 | 13, 16 | eqeq12d 2221 |
. . . 4
|
| 18 | 17 | imbi2d 230 |
. . 3
|
| 19 | oveq2 5959 |
. . . . . . 7
| |
| 20 | 19 | mpteq1d 4133 |
. . . . . 6
|
| 21 | 20 | oveq2d 5967 |
. . . . 5
|
| 22 | oveq1 5958 |
. . . . . . 7
| |
| 23 | 22 | oveq1d 5966 |
. . . . . 6
|
| 24 | 23 | oveq1d 5966 |
. . . . 5
|
| 25 | 21, 24 | eqeq12d 2221 |
. . . 4
|
| 26 | 25 | imbi2d 230 |
. . 3
|
| 27 | oveq2 5959 |
. . . . . . 7
| |
| 28 | 27 | mpteq1d 4133 |
. . . . . 6
|
| 29 | 28 | oveq2d 5967 |
. . . . 5
|
| 30 | oveq1 5958 |
. . . . . . 7
| |
| 31 | 30 | oveq1d 5966 |
. . . . . 6
|
| 32 | 31 | oveq1d 5966 |
. . . . 5
|
| 33 | 29, 32 | eqeq12d 2221 |
. . . 4
|
| 34 | 33 | imbi2d 230 |
. . 3
|
| 35 | simplr 528 |
. . . . . 6
| |
| 36 | gsumconst.b |
. . . . . . 7
| |
| 37 | gsumconst.m |
. . . . . . 7
| |
| 38 | 36, 37 | mulg1 13509 |
. . . . . 6
|
| 39 | 35, 38 | syl 14 |
. . . . 5
|
| 40 | zcn 9384 |
. . . . . . . . . 10
| |
| 41 | 40 | subidd 8378 |
. . . . . . . . 9
|
| 42 | 41 | oveq1d 5966 |
. . . . . . . 8
|
| 43 | 0p1e1 9157 |
. . . . . . . 8
| |
| 44 | 42, 43 | eqtrdi 2255 |
. . . . . . 7
|
| 45 | 44 | oveq1d 5966 |
. . . . . 6
|
| 46 | 45 | adantl 277 |
. . . . 5
|
| 47 | eqid 2206 |
. . . . . . 7
| |
| 48 | simpll 527 |
. . . . . . 7
| |
| 49 | uzid 9669 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | simpllr 534 |
. . . . . . . 8
| |
| 52 | 51 | fmpttd 5742 |
. . . . . . 7
|
| 53 | 36, 47, 48, 50, 52 | gsumval2 13273 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54, 54 | fzfigd 10583 |
. . . . . . . 8
|
| 56 | 55 | mptexd 5818 |
. . . . . . 7
|
| 57 | plusgslid 12988 |
. . . . . . . . 9
| |
| 58 | 57 | slotex 12903 |
. . . . . . . 8
|
| 59 | 48, 58 | syl 14 |
. . . . . . 7
|
| 60 | seq1g 10615 |
. . . . . . 7
| |
| 61 | 54, 56, 59, 60 | syl3anc 1250 |
. . . . . 6
|
| 62 | eqid 2206 |
. . . . . . 7
| |
| 63 | eqidd 2207 |
. . . . . . 7
| |
| 64 | elfz3 10163 |
. . . . . . . 8
| |
| 65 | 64 | adantl 277 |
. . . . . . 7
|
| 66 | 62, 63, 65, 35 | fvmptd3 5680 |
. . . . . 6
|
| 67 | 53, 61, 66 | 3eqtrd 2243 |
. . . . 5
|
| 68 | 39, 46, 67 | 3eqtr4rd 2250 |
. . . 4
|
| 69 | 68 | expcom 116 |
. . 3
|
| 70 | fzssp1 10196 |
. . . . . . . . . . . . 13
| |
| 71 | 70 | a1i 9 |
. . . . . . . . . . . 12
|
| 72 | 71 | resmptd 5015 |
. . . . . . . . . . 11
|
| 73 | 72 | oveq2d 5967 |
. . . . . . . . . 10
|
| 74 | simpr 110 |
. . . . . . . . . 10
| |
| 75 | 73, 74 | eqtrd 2239 |
. . . . . . . . 9
|
| 76 | eqid 2206 |
. . . . . . . . . 10
| |
| 77 | eqidd 2207 |
. . . . . . . . . 10
| |
| 78 | simplr 528 |
. . . . . . . . . . 11
| |
| 79 | peano2uz 9711 |
. . . . . . . . . . 11
| |
| 80 | eluzfz2 10161 |
. . . . . . . . . . 11
| |
| 81 | 78, 79, 80 | 3syl 17 |
. . . . . . . . . 10
|
| 82 | simpllr 534 |
. . . . . . . . . 10
| |
| 83 | 76, 77, 81, 82 | fvmptd3 5680 |
. . . . . . . . 9
|
| 84 | 75, 83 | oveq12d 5969 |
. . . . . . . 8
|
| 85 | simplll 533 |
. . . . . . . . 9
| |
| 86 | eluzel2 9660 |
. . . . . . . . . 10
| |
| 87 | 78, 86 | syl 14 |
. . . . . . . . 9
|
| 88 | simpllr 534 |
. . . . . . . . . . 11
| |
| 89 | 88 | fmpttd 5742 |
. . . . . . . . . 10
|
| 90 | 89 | adantr 276 |
. . . . . . . . 9
|
| 91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 13274 |
. . . . . . . 8
|
| 92 | uznn0sub 9687 |
. . . . . . . . . 10
| |
| 93 | nn0p1nn 9341 |
. . . . . . . . . 10
| |
| 94 | 78, 92, 93 | 3syl 17 |
. . . . . . . . 9
|
| 95 | 36, 37, 47 | mulgnnp1 13510 |
. . . . . . . . 9
|
| 96 | 94, 82, 95 | syl2anc 411 |
. . . . . . . 8
|
| 97 | 84, 91, 96 | 3eqtr4d 2249 |
. . . . . . 7
|
| 98 | eluzelcn 9666 |
. . . . . . . . . . . 12
| |
| 99 | 86 | zcnd 9503 |
. . . . . . . . . . . . 13
|
| 100 | 99 | negcld 8377 |
. . . . . . . . . . . 12
|
| 101 | 1cnd 8095 |
. . . . . . . . . . . 12
| |
| 102 | 98, 100, 101 | add32d 8247 |
. . . . . . . . . . 11
|
| 103 | 98, 99 | negsubd 8396 |
. . . . . . . . . . . 12
|
| 104 | 103 | oveq1d 5966 |
. . . . . . . . . . 11
|
| 105 | 98, 101 | addcld 8099 |
. . . . . . . . . . . 12
|
| 106 | 105, 99 | negsubd 8396 |
. . . . . . . . . . 11
|
| 107 | 102, 104, 106 | 3eqtr3d 2247 |
. . . . . . . . . 10
|
| 108 | 107 | oveq1d 5966 |
. . . . . . . . 9
|
| 109 | 108 | oveq1d 5966 |
. . . . . . . 8
|
| 110 | 78, 109 | syl 14 |
. . . . . . 7
|
| 111 | 97, 110 | eqtrd 2239 |
. . . . . 6
|
| 112 | 111 | ex 115 |
. . . . 5
|
| 113 | 112 | expcom 116 |
. . . 4
|
| 114 | 113 | a2d 26 |
. . 3
|
| 115 | 10, 18, 26, 34, 69, 114 | uzind4 9716 |
. 2
|
| 116 | 1, 2, 115 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-igsum 13135 df-minusg 13380 df-mulg 13500 |
| This theorem is referenced by: gsumfzconstf 13722 lgseisenlem4 15594 |
| Copyright terms: Public domain | W3C validator |