| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzconst | Unicode version | ||
| Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsumconst.b |
|
| gsumconst.m |
|
| Ref | Expression |
|---|---|
| gsumfzconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1003 |
. 2
| |
| 2 | 3simpb 1000 |
. 2
| |
| 3 | oveq2 5982 |
. . . . . . 7
| |
| 4 | 3 | mpteq1d 4148 |
. . . . . 6
|
| 5 | 4 | oveq2d 5990 |
. . . . 5
|
| 6 | oveq1 5981 |
. . . . . . 7
| |
| 7 | 6 | oveq1d 5989 |
. . . . . 6
|
| 8 | 7 | oveq1d 5989 |
. . . . 5
|
| 9 | 5, 8 | eqeq12d 2224 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | oveq2 5982 |
. . . . . . 7
| |
| 12 | 11 | mpteq1d 4148 |
. . . . . 6
|
| 13 | 12 | oveq2d 5990 |
. . . . 5
|
| 14 | oveq1 5981 |
. . . . . . 7
| |
| 15 | 14 | oveq1d 5989 |
. . . . . 6
|
| 16 | 15 | oveq1d 5989 |
. . . . 5
|
| 17 | 13, 16 | eqeq12d 2224 |
. . . 4
|
| 18 | 17 | imbi2d 230 |
. . 3
|
| 19 | oveq2 5982 |
. . . . . . 7
| |
| 20 | 19 | mpteq1d 4148 |
. . . . . 6
|
| 21 | 20 | oveq2d 5990 |
. . . . 5
|
| 22 | oveq1 5981 |
. . . . . . 7
| |
| 23 | 22 | oveq1d 5989 |
. . . . . 6
|
| 24 | 23 | oveq1d 5989 |
. . . . 5
|
| 25 | 21, 24 | eqeq12d 2224 |
. . . 4
|
| 26 | 25 | imbi2d 230 |
. . 3
|
| 27 | oveq2 5982 |
. . . . . . 7
| |
| 28 | 27 | mpteq1d 4148 |
. . . . . 6
|
| 29 | 28 | oveq2d 5990 |
. . . . 5
|
| 30 | oveq1 5981 |
. . . . . . 7
| |
| 31 | 30 | oveq1d 5989 |
. . . . . 6
|
| 32 | 31 | oveq1d 5989 |
. . . . 5
|
| 33 | 29, 32 | eqeq12d 2224 |
. . . 4
|
| 34 | 33 | imbi2d 230 |
. . 3
|
| 35 | simplr 528 |
. . . . . 6
| |
| 36 | gsumconst.b |
. . . . . . 7
| |
| 37 | gsumconst.m |
. . . . . . 7
| |
| 38 | 36, 37 | mulg1 13632 |
. . . . . 6
|
| 39 | 35, 38 | syl 14 |
. . . . 5
|
| 40 | zcn 9419 |
. . . . . . . . . 10
| |
| 41 | 40 | subidd 8413 |
. . . . . . . . 9
|
| 42 | 41 | oveq1d 5989 |
. . . . . . . 8
|
| 43 | 0p1e1 9192 |
. . . . . . . 8
| |
| 44 | 42, 43 | eqtrdi 2258 |
. . . . . . 7
|
| 45 | 44 | oveq1d 5989 |
. . . . . 6
|
| 46 | 45 | adantl 277 |
. . . . 5
|
| 47 | eqid 2209 |
. . . . . . 7
| |
| 48 | simpll 527 |
. . . . . . 7
| |
| 49 | uzid 9704 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | simpllr 534 |
. . . . . . . 8
| |
| 52 | 51 | fmpttd 5763 |
. . . . . . 7
|
| 53 | 36, 47, 48, 50, 52 | gsumval2 13396 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54, 54 | fzfigd 10620 |
. . . . . . . 8
|
| 56 | 55 | mptexd 5839 |
. . . . . . 7
|
| 57 | plusgslid 13111 |
. . . . . . . . 9
| |
| 58 | 57 | slotex 13025 |
. . . . . . . 8
|
| 59 | 48, 58 | syl 14 |
. . . . . . 7
|
| 60 | seq1g 10652 |
. . . . . . 7
| |
| 61 | 54, 56, 59, 60 | syl3anc 1252 |
. . . . . 6
|
| 62 | eqid 2209 |
. . . . . . 7
| |
| 63 | eqidd 2210 |
. . . . . . 7
| |
| 64 | elfz3 10198 |
. . . . . . . 8
| |
| 65 | 64 | adantl 277 |
. . . . . . 7
|
| 66 | 62, 63, 65, 35 | fvmptd3 5701 |
. . . . . 6
|
| 67 | 53, 61, 66 | 3eqtrd 2246 |
. . . . 5
|
| 68 | 39, 46, 67 | 3eqtr4rd 2253 |
. . . 4
|
| 69 | 68 | expcom 116 |
. . 3
|
| 70 | fzssp1 10231 |
. . . . . . . . . . . . 13
| |
| 71 | 70 | a1i 9 |
. . . . . . . . . . . 12
|
| 72 | 71 | resmptd 5032 |
. . . . . . . . . . 11
|
| 73 | 72 | oveq2d 5990 |
. . . . . . . . . 10
|
| 74 | simpr 110 |
. . . . . . . . . 10
| |
| 75 | 73, 74 | eqtrd 2242 |
. . . . . . . . 9
|
| 76 | eqid 2209 |
. . . . . . . . . 10
| |
| 77 | eqidd 2210 |
. . . . . . . . . 10
| |
| 78 | simplr 528 |
. . . . . . . . . . 11
| |
| 79 | peano2uz 9746 |
. . . . . . . . . . 11
| |
| 80 | eluzfz2 10196 |
. . . . . . . . . . 11
| |
| 81 | 78, 79, 80 | 3syl 17 |
. . . . . . . . . 10
|
| 82 | simpllr 534 |
. . . . . . . . . 10
| |
| 83 | 76, 77, 81, 82 | fvmptd3 5701 |
. . . . . . . . 9
|
| 84 | 75, 83 | oveq12d 5992 |
. . . . . . . 8
|
| 85 | simplll 533 |
. . . . . . . . 9
| |
| 86 | eluzel2 9695 |
. . . . . . . . . 10
| |
| 87 | 78, 86 | syl 14 |
. . . . . . . . 9
|
| 88 | simpllr 534 |
. . . . . . . . . . 11
| |
| 89 | 88 | fmpttd 5763 |
. . . . . . . . . 10
|
| 90 | 89 | adantr 276 |
. . . . . . . . 9
|
| 91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 13397 |
. . . . . . . 8
|
| 92 | uznn0sub 9722 |
. . . . . . . . . 10
| |
| 93 | nn0p1nn 9376 |
. . . . . . . . . 10
| |
| 94 | 78, 92, 93 | 3syl 17 |
. . . . . . . . 9
|
| 95 | 36, 37, 47 | mulgnnp1 13633 |
. . . . . . . . 9
|
| 96 | 94, 82, 95 | syl2anc 411 |
. . . . . . . 8
|
| 97 | 84, 91, 96 | 3eqtr4d 2252 |
. . . . . . 7
|
| 98 | eluzelcn 9701 |
. . . . . . . . . . . 12
| |
| 99 | 86 | zcnd 9538 |
. . . . . . . . . . . . 13
|
| 100 | 99 | negcld 8412 |
. . . . . . . . . . . 12
|
| 101 | 1cnd 8130 |
. . . . . . . . . . . 12
| |
| 102 | 98, 100, 101 | add32d 8282 |
. . . . . . . . . . 11
|
| 103 | 98, 99 | negsubd 8431 |
. . . . . . . . . . . 12
|
| 104 | 103 | oveq1d 5989 |
. . . . . . . . . . 11
|
| 105 | 98, 101 | addcld 8134 |
. . . . . . . . . . . 12
|
| 106 | 105, 99 | negsubd 8431 |
. . . . . . . . . . 11
|
| 107 | 102, 104, 106 | 3eqtr3d 2250 |
. . . . . . . . . 10
|
| 108 | 107 | oveq1d 5989 |
. . . . . . . . 9
|
| 109 | 108 | oveq1d 5989 |
. . . . . . . 8
|
| 110 | 78, 109 | syl 14 |
. . . . . . 7
|
| 111 | 97, 110 | eqtrd 2242 |
. . . . . 6
|
| 112 | 111 | ex 115 |
. . . . 5
|
| 113 | 112 | expcom 116 |
. . . 4
|
| 114 | 113 | a2d 26 |
. . 3
|
| 115 | 10, 18, 26, 34, 69, 114 | uzind4 9751 |
. 2
|
| 116 | 1, 2, 115 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-seqfrec 10637 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-igsum 13258 df-minusg 13503 df-mulg 13623 |
| This theorem is referenced by: gsumfzconstf 13845 lgseisenlem4 15717 |
| Copyright terms: Public domain | W3C validator |