| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzconst | Unicode version | ||
| Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsumconst.b |
|
| gsumconst.m |
|
| Ref | Expression |
|---|---|
| gsumfzconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 |
. 2
| |
| 2 | 3simpb 997 |
. 2
| |
| 3 | oveq2 5933 |
. . . . . . 7
| |
| 4 | 3 | mpteq1d 4119 |
. . . . . 6
|
| 5 | 4 | oveq2d 5941 |
. . . . 5
|
| 6 | oveq1 5932 |
. . . . . . 7
| |
| 7 | 6 | oveq1d 5940 |
. . . . . 6
|
| 8 | 7 | oveq1d 5940 |
. . . . 5
|
| 9 | 5, 8 | eqeq12d 2211 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | oveq2 5933 |
. . . . . . 7
| |
| 12 | 11 | mpteq1d 4119 |
. . . . . 6
|
| 13 | 12 | oveq2d 5941 |
. . . . 5
|
| 14 | oveq1 5932 |
. . . . . . 7
| |
| 15 | 14 | oveq1d 5940 |
. . . . . 6
|
| 16 | 15 | oveq1d 5940 |
. . . . 5
|
| 17 | 13, 16 | eqeq12d 2211 |
. . . 4
|
| 18 | 17 | imbi2d 230 |
. . 3
|
| 19 | oveq2 5933 |
. . . . . . 7
| |
| 20 | 19 | mpteq1d 4119 |
. . . . . 6
|
| 21 | 20 | oveq2d 5941 |
. . . . 5
|
| 22 | oveq1 5932 |
. . . . . . 7
| |
| 23 | 22 | oveq1d 5940 |
. . . . . 6
|
| 24 | 23 | oveq1d 5940 |
. . . . 5
|
| 25 | 21, 24 | eqeq12d 2211 |
. . . 4
|
| 26 | 25 | imbi2d 230 |
. . 3
|
| 27 | oveq2 5933 |
. . . . . . 7
| |
| 28 | 27 | mpteq1d 4119 |
. . . . . 6
|
| 29 | 28 | oveq2d 5941 |
. . . . 5
|
| 30 | oveq1 5932 |
. . . . . . 7
| |
| 31 | 30 | oveq1d 5940 |
. . . . . 6
|
| 32 | 31 | oveq1d 5940 |
. . . . 5
|
| 33 | 29, 32 | eqeq12d 2211 |
. . . 4
|
| 34 | 33 | imbi2d 230 |
. . 3
|
| 35 | simplr 528 |
. . . . . 6
| |
| 36 | gsumconst.b |
. . . . . . 7
| |
| 37 | gsumconst.m |
. . . . . . 7
| |
| 38 | 36, 37 | mulg1 13335 |
. . . . . 6
|
| 39 | 35, 38 | syl 14 |
. . . . 5
|
| 40 | zcn 9348 |
. . . . . . . . . 10
| |
| 41 | 40 | subidd 8342 |
. . . . . . . . 9
|
| 42 | 41 | oveq1d 5940 |
. . . . . . . 8
|
| 43 | 0p1e1 9121 |
. . . . . . . 8
| |
| 44 | 42, 43 | eqtrdi 2245 |
. . . . . . 7
|
| 45 | 44 | oveq1d 5940 |
. . . . . 6
|
| 46 | 45 | adantl 277 |
. . . . 5
|
| 47 | eqid 2196 |
. . . . . . 7
| |
| 48 | simpll 527 |
. . . . . . 7
| |
| 49 | uzid 9632 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | simpllr 534 |
. . . . . . . 8
| |
| 52 | 51 | fmpttd 5720 |
. . . . . . 7
|
| 53 | 36, 47, 48, 50, 52 | gsumval2 13099 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54, 54 | fzfigd 10540 |
. . . . . . . 8
|
| 56 | 55 | mptexd 5792 |
. . . . . . 7
|
| 57 | plusgslid 12815 |
. . . . . . . . 9
| |
| 58 | 57 | slotex 12730 |
. . . . . . . 8
|
| 59 | 48, 58 | syl 14 |
. . . . . . 7
|
| 60 | seq1g 10572 |
. . . . . . 7
| |
| 61 | 54, 56, 59, 60 | syl3anc 1249 |
. . . . . 6
|
| 62 | eqid 2196 |
. . . . . . 7
| |
| 63 | eqidd 2197 |
. . . . . . 7
| |
| 64 | elfz3 10126 |
. . . . . . . 8
| |
| 65 | 64 | adantl 277 |
. . . . . . 7
|
| 66 | 62, 63, 65, 35 | fvmptd3 5658 |
. . . . . 6
|
| 67 | 53, 61, 66 | 3eqtrd 2233 |
. . . . 5
|
| 68 | 39, 46, 67 | 3eqtr4rd 2240 |
. . . 4
|
| 69 | 68 | expcom 116 |
. . 3
|
| 70 | fzssp1 10159 |
. . . . . . . . . . . . 13
| |
| 71 | 70 | a1i 9 |
. . . . . . . . . . . 12
|
| 72 | 71 | resmptd 4998 |
. . . . . . . . . . 11
|
| 73 | 72 | oveq2d 5941 |
. . . . . . . . . 10
|
| 74 | simpr 110 |
. . . . . . . . . 10
| |
| 75 | 73, 74 | eqtrd 2229 |
. . . . . . . . 9
|
| 76 | eqid 2196 |
. . . . . . . . . 10
| |
| 77 | eqidd 2197 |
. . . . . . . . . 10
| |
| 78 | simplr 528 |
. . . . . . . . . . 11
| |
| 79 | peano2uz 9674 |
. . . . . . . . . . 11
| |
| 80 | eluzfz2 10124 |
. . . . . . . . . . 11
| |
| 81 | 78, 79, 80 | 3syl 17 |
. . . . . . . . . 10
|
| 82 | simpllr 534 |
. . . . . . . . . 10
| |
| 83 | 76, 77, 81, 82 | fvmptd3 5658 |
. . . . . . . . 9
|
| 84 | 75, 83 | oveq12d 5943 |
. . . . . . . 8
|
| 85 | simplll 533 |
. . . . . . . . 9
| |
| 86 | eluzel2 9623 |
. . . . . . . . . 10
| |
| 87 | 78, 86 | syl 14 |
. . . . . . . . 9
|
| 88 | simpllr 534 |
. . . . . . . . . . 11
| |
| 89 | 88 | fmpttd 5720 |
. . . . . . . . . 10
|
| 90 | 89 | adantr 276 |
. . . . . . . . 9
|
| 91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 13100 |
. . . . . . . 8
|
| 92 | uznn0sub 9650 |
. . . . . . . . . 10
| |
| 93 | nn0p1nn 9305 |
. . . . . . . . . 10
| |
| 94 | 78, 92, 93 | 3syl 17 |
. . . . . . . . 9
|
| 95 | 36, 37, 47 | mulgnnp1 13336 |
. . . . . . . . 9
|
| 96 | 94, 82, 95 | syl2anc 411 |
. . . . . . . 8
|
| 97 | 84, 91, 96 | 3eqtr4d 2239 |
. . . . . . 7
|
| 98 | eluzelcn 9629 |
. . . . . . . . . . . 12
| |
| 99 | 86 | zcnd 9466 |
. . . . . . . . . . . . 13
|
| 100 | 99 | negcld 8341 |
. . . . . . . . . . . 12
|
| 101 | 1cnd 8059 |
. . . . . . . . . . . 12
| |
| 102 | 98, 100, 101 | add32d 8211 |
. . . . . . . . . . 11
|
| 103 | 98, 99 | negsubd 8360 |
. . . . . . . . . . . 12
|
| 104 | 103 | oveq1d 5940 |
. . . . . . . . . . 11
|
| 105 | 98, 101 | addcld 8063 |
. . . . . . . . . . . 12
|
| 106 | 105, 99 | negsubd 8360 |
. . . . . . . . . . 11
|
| 107 | 102, 104, 106 | 3eqtr3d 2237 |
. . . . . . . . . 10
|
| 108 | 107 | oveq1d 5940 |
. . . . . . . . 9
|
| 109 | 108 | oveq1d 5940 |
. . . . . . . 8
|
| 110 | 78, 109 | syl 14 |
. . . . . . 7
|
| 111 | 97, 110 | eqtrd 2229 |
. . . . . 6
|
| 112 | 111 | ex 115 |
. . . . 5
|
| 113 | 112 | expcom 116 |
. . . 4
|
| 114 | 113 | a2d 26 |
. . 3
|
| 115 | 10, 18, 26, 34, 69, 114 | uzind4 9679 |
. 2
|
| 116 | 1, 2, 115 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-igsum 12961 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: gsumfzconstf 13548 lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |