| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > gsumfzconst | Unicode version | ||
| Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| gsumconst.b | 
 | 
| gsumconst.m | 
 | 
| Ref | Expression | 
|---|---|
| gsumfzconst | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1000 | 
. 2
 | |
| 2 | 3simpb 997 | 
. 2
 | |
| 3 | oveq2 5930 | 
. . . . . . 7
 | |
| 4 | 3 | mpteq1d 4118 | 
. . . . . 6
 | 
| 5 | 4 | oveq2d 5938 | 
. . . . 5
 | 
| 6 | oveq1 5929 | 
. . . . . . 7
 | |
| 7 | 6 | oveq1d 5937 | 
. . . . . 6
 | 
| 8 | 7 | oveq1d 5937 | 
. . . . 5
 | 
| 9 | 5, 8 | eqeq12d 2211 | 
. . . 4
 | 
| 10 | 9 | imbi2d 230 | 
. . 3
 | 
| 11 | oveq2 5930 | 
. . . . . . 7
 | |
| 12 | 11 | mpteq1d 4118 | 
. . . . . 6
 | 
| 13 | 12 | oveq2d 5938 | 
. . . . 5
 | 
| 14 | oveq1 5929 | 
. . . . . . 7
 | |
| 15 | 14 | oveq1d 5937 | 
. . . . . 6
 | 
| 16 | 15 | oveq1d 5937 | 
. . . . 5
 | 
| 17 | 13, 16 | eqeq12d 2211 | 
. . . 4
 | 
| 18 | 17 | imbi2d 230 | 
. . 3
 | 
| 19 | oveq2 5930 | 
. . . . . . 7
 | |
| 20 | 19 | mpteq1d 4118 | 
. . . . . 6
 | 
| 21 | 20 | oveq2d 5938 | 
. . . . 5
 | 
| 22 | oveq1 5929 | 
. . . . . . 7
 | |
| 23 | 22 | oveq1d 5937 | 
. . . . . 6
 | 
| 24 | 23 | oveq1d 5937 | 
. . . . 5
 | 
| 25 | 21, 24 | eqeq12d 2211 | 
. . . 4
 | 
| 26 | 25 | imbi2d 230 | 
. . 3
 | 
| 27 | oveq2 5930 | 
. . . . . . 7
 | |
| 28 | 27 | mpteq1d 4118 | 
. . . . . 6
 | 
| 29 | 28 | oveq2d 5938 | 
. . . . 5
 | 
| 30 | oveq1 5929 | 
. . . . . . 7
 | |
| 31 | 30 | oveq1d 5937 | 
. . . . . 6
 | 
| 32 | 31 | oveq1d 5937 | 
. . . . 5
 | 
| 33 | 29, 32 | eqeq12d 2211 | 
. . . 4
 | 
| 34 | 33 | imbi2d 230 | 
. . 3
 | 
| 35 | simplr 528 | 
. . . . . 6
 | |
| 36 | gsumconst.b | 
. . . . . . 7
 | |
| 37 | gsumconst.m | 
. . . . . . 7
 | |
| 38 | 36, 37 | mulg1 13259 | 
. . . . . 6
 | 
| 39 | 35, 38 | syl 14 | 
. . . . 5
 | 
| 40 | zcn 9331 | 
. . . . . . . . . 10
 | |
| 41 | 40 | subidd 8325 | 
. . . . . . . . 9
 | 
| 42 | 41 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 43 | 0p1e1 9104 | 
. . . . . . . 8
 | |
| 44 | 42, 43 | eqtrdi 2245 | 
. . . . . . 7
 | 
| 45 | 44 | oveq1d 5937 | 
. . . . . 6
 | 
| 46 | 45 | adantl 277 | 
. . . . 5
 | 
| 47 | eqid 2196 | 
. . . . . . 7
 | |
| 48 | simpll 527 | 
. . . . . . 7
 | |
| 49 | uzid 9615 | 
. . . . . . . 8
 | |
| 50 | 49 | adantl 277 | 
. . . . . . 7
 | 
| 51 | simpllr 534 | 
. . . . . . . 8
 | |
| 52 | 51 | fmpttd 5717 | 
. . . . . . 7
 | 
| 53 | 36, 47, 48, 50, 52 | gsumval2 13040 | 
. . . . . 6
 | 
| 54 | simpr 110 | 
. . . . . . 7
 | |
| 55 | 54, 54 | fzfigd 10523 | 
. . . . . . . 8
 | 
| 56 | 55 | mptexd 5789 | 
. . . . . . 7
 | 
| 57 | plusgslid 12790 | 
. . . . . . . . 9
 | |
| 58 | 57 | slotex 12705 | 
. . . . . . . 8
 | 
| 59 | 48, 58 | syl 14 | 
. . . . . . 7
 | 
| 60 | seq1g 10555 | 
. . . . . . 7
 | |
| 61 | 54, 56, 59, 60 | syl3anc 1249 | 
. . . . . 6
 | 
| 62 | eqid 2196 | 
. . . . . . 7
 | |
| 63 | eqidd 2197 | 
. . . . . . 7
 | |
| 64 | elfz3 10109 | 
. . . . . . . 8
 | |
| 65 | 64 | adantl 277 | 
. . . . . . 7
 | 
| 66 | 62, 63, 65, 35 | fvmptd3 5655 | 
. . . . . 6
 | 
| 67 | 53, 61, 66 | 3eqtrd 2233 | 
. . . . 5
 | 
| 68 | 39, 46, 67 | 3eqtr4rd 2240 | 
. . . 4
 | 
| 69 | 68 | expcom 116 | 
. . 3
 | 
| 70 | fzssp1 10142 | 
. . . . . . . . . . . . 13
 | |
| 71 | 70 | a1i 9 | 
. . . . . . . . . . . 12
 | 
| 72 | 71 | resmptd 4997 | 
. . . . . . . . . . 11
 | 
| 73 | 72 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 74 | simpr 110 | 
. . . . . . . . . 10
 | |
| 75 | 73, 74 | eqtrd 2229 | 
. . . . . . . . 9
 | 
| 76 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 77 | eqidd 2197 | 
. . . . . . . . . 10
 | |
| 78 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 79 | peano2uz 9657 | 
. . . . . . . . . . 11
 | |
| 80 | eluzfz2 10107 | 
. . . . . . . . . . 11
 | |
| 81 | 78, 79, 80 | 3syl 17 | 
. . . . . . . . . 10
 | 
| 82 | simpllr 534 | 
. . . . . . . . . 10
 | |
| 83 | 76, 77, 81, 82 | fvmptd3 5655 | 
. . . . . . . . 9
 | 
| 84 | 75, 83 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 85 | simplll 533 | 
. . . . . . . . 9
 | |
| 86 | eluzel2 9606 | 
. . . . . . . . . 10
 | |
| 87 | 78, 86 | syl 14 | 
. . . . . . . . 9
 | 
| 88 | simpllr 534 | 
. . . . . . . . . . 11
 | |
| 89 | 88 | fmpttd 5717 | 
. . . . . . . . . 10
 | 
| 90 | 89 | adantr 276 | 
. . . . . . . . 9
 | 
| 91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 13041 | 
. . . . . . . 8
 | 
| 92 | uznn0sub 9633 | 
. . . . . . . . . 10
 | |
| 93 | nn0p1nn 9288 | 
. . . . . . . . . 10
 | |
| 94 | 78, 92, 93 | 3syl 17 | 
. . . . . . . . 9
 | 
| 95 | 36, 37, 47 | mulgnnp1 13260 | 
. . . . . . . . 9
 | 
| 96 | 94, 82, 95 | syl2anc 411 | 
. . . . . . . 8
 | 
| 97 | 84, 91, 96 | 3eqtr4d 2239 | 
. . . . . . 7
 | 
| 98 | eluzelcn 9612 | 
. . . . . . . . . . . 12
 | |
| 99 | 86 | zcnd 9449 | 
. . . . . . . . . . . . 13
 | 
| 100 | 99 | negcld 8324 | 
. . . . . . . . . . . 12
 | 
| 101 | 1cnd 8042 | 
. . . . . . . . . . . 12
 | |
| 102 | 98, 100, 101 | add32d 8194 | 
. . . . . . . . . . 11
 | 
| 103 | 98, 99 | negsubd 8343 | 
. . . . . . . . . . . 12
 | 
| 104 | 103 | oveq1d 5937 | 
. . . . . . . . . . 11
 | 
| 105 | 98, 101 | addcld 8046 | 
. . . . . . . . . . . 12
 | 
| 106 | 105, 99 | negsubd 8343 | 
. . . . . . . . . . 11
 | 
| 107 | 102, 104, 106 | 3eqtr3d 2237 | 
. . . . . . . . . 10
 | 
| 108 | 107 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 109 | 108 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 110 | 78, 109 | syl 14 | 
. . . . . . 7
 | 
| 111 | 97, 110 | eqtrd 2229 | 
. . . . . 6
 | 
| 112 | 111 | ex 115 | 
. . . . 5
 | 
| 113 | 112 | expcom 116 | 
. . . 4
 | 
| 114 | 113 | a2d 26 | 
. . 3
 | 
| 115 | 10, 18, 26, 34, 69, 114 | uzind4 9662 | 
. 2
 | 
| 116 | 1, 2, 115 | sylc 62 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-igsum 12930 df-minusg 13136 df-mulg 13250 | 
| This theorem is referenced by: gsumfzconstf 13472 lgseisenlem4 15314 | 
| Copyright terms: Public domain | W3C validator |