| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzconst | Unicode version | ||
| Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| gsumconst.b |
|
| gsumconst.m |
|
| Ref | Expression |
|---|---|
| gsumfzconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 |
. 2
| |
| 2 | 3simpb 1019 |
. 2
| |
| 3 | oveq2 6015 |
. . . . . . 7
| |
| 4 | 3 | mpteq1d 4169 |
. . . . . 6
|
| 5 | 4 | oveq2d 6023 |
. . . . 5
|
| 6 | oveq1 6014 |
. . . . . . 7
| |
| 7 | 6 | oveq1d 6022 |
. . . . . 6
|
| 8 | 7 | oveq1d 6022 |
. . . . 5
|
| 9 | 5, 8 | eqeq12d 2244 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | oveq2 6015 |
. . . . . . 7
| |
| 12 | 11 | mpteq1d 4169 |
. . . . . 6
|
| 13 | 12 | oveq2d 6023 |
. . . . 5
|
| 14 | oveq1 6014 |
. . . . . . 7
| |
| 15 | 14 | oveq1d 6022 |
. . . . . 6
|
| 16 | 15 | oveq1d 6022 |
. . . . 5
|
| 17 | 13, 16 | eqeq12d 2244 |
. . . 4
|
| 18 | 17 | imbi2d 230 |
. . 3
|
| 19 | oveq2 6015 |
. . . . . . 7
| |
| 20 | 19 | mpteq1d 4169 |
. . . . . 6
|
| 21 | 20 | oveq2d 6023 |
. . . . 5
|
| 22 | oveq1 6014 |
. . . . . . 7
| |
| 23 | 22 | oveq1d 6022 |
. . . . . 6
|
| 24 | 23 | oveq1d 6022 |
. . . . 5
|
| 25 | 21, 24 | eqeq12d 2244 |
. . . 4
|
| 26 | 25 | imbi2d 230 |
. . 3
|
| 27 | oveq2 6015 |
. . . . . . 7
| |
| 28 | 27 | mpteq1d 4169 |
. . . . . 6
|
| 29 | 28 | oveq2d 6023 |
. . . . 5
|
| 30 | oveq1 6014 |
. . . . . . 7
| |
| 31 | 30 | oveq1d 6022 |
. . . . . 6
|
| 32 | 31 | oveq1d 6022 |
. . . . 5
|
| 33 | 29, 32 | eqeq12d 2244 |
. . . 4
|
| 34 | 33 | imbi2d 230 |
. . 3
|
| 35 | simplr 528 |
. . . . . 6
| |
| 36 | gsumconst.b |
. . . . . . 7
| |
| 37 | gsumconst.m |
. . . . . . 7
| |
| 38 | 36, 37 | mulg1 13674 |
. . . . . 6
|
| 39 | 35, 38 | syl 14 |
. . . . 5
|
| 40 | zcn 9459 |
. . . . . . . . . 10
| |
| 41 | 40 | subidd 8453 |
. . . . . . . . 9
|
| 42 | 41 | oveq1d 6022 |
. . . . . . . 8
|
| 43 | 0p1e1 9232 |
. . . . . . . 8
| |
| 44 | 42, 43 | eqtrdi 2278 |
. . . . . . 7
|
| 45 | 44 | oveq1d 6022 |
. . . . . 6
|
| 46 | 45 | adantl 277 |
. . . . 5
|
| 47 | eqid 2229 |
. . . . . . 7
| |
| 48 | simpll 527 |
. . . . . . 7
| |
| 49 | uzid 9744 |
. . . . . . . 8
| |
| 50 | 49 | adantl 277 |
. . . . . . 7
|
| 51 | simpllr 534 |
. . . . . . . 8
| |
| 52 | 51 | fmpttd 5792 |
. . . . . . 7
|
| 53 | 36, 47, 48, 50, 52 | gsumval2 13438 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54, 54 | fzfigd 10661 |
. . . . . . . 8
|
| 56 | 55 | mptexd 5870 |
. . . . . . 7
|
| 57 | plusgslid 13153 |
. . . . . . . . 9
| |
| 58 | 57 | slotex 13067 |
. . . . . . . 8
|
| 59 | 48, 58 | syl 14 |
. . . . . . 7
|
| 60 | seq1g 10693 |
. . . . . . 7
| |
| 61 | 54, 56, 59, 60 | syl3anc 1271 |
. . . . . 6
|
| 62 | eqid 2229 |
. . . . . . 7
| |
| 63 | eqidd 2230 |
. . . . . . 7
| |
| 64 | elfz3 10238 |
. . . . . . . 8
| |
| 65 | 64 | adantl 277 |
. . . . . . 7
|
| 66 | 62, 63, 65, 35 | fvmptd3 5730 |
. . . . . 6
|
| 67 | 53, 61, 66 | 3eqtrd 2266 |
. . . . 5
|
| 68 | 39, 46, 67 | 3eqtr4rd 2273 |
. . . 4
|
| 69 | 68 | expcom 116 |
. . 3
|
| 70 | fzssp1 10271 |
. . . . . . . . . . . . 13
| |
| 71 | 70 | a1i 9 |
. . . . . . . . . . . 12
|
| 72 | 71 | resmptd 5056 |
. . . . . . . . . . 11
|
| 73 | 72 | oveq2d 6023 |
. . . . . . . . . 10
|
| 74 | simpr 110 |
. . . . . . . . . 10
| |
| 75 | 73, 74 | eqtrd 2262 |
. . . . . . . . 9
|
| 76 | eqid 2229 |
. . . . . . . . . 10
| |
| 77 | eqidd 2230 |
. . . . . . . . . 10
| |
| 78 | simplr 528 |
. . . . . . . . . . 11
| |
| 79 | peano2uz 9786 |
. . . . . . . . . . 11
| |
| 80 | eluzfz2 10236 |
. . . . . . . . . . 11
| |
| 81 | 78, 79, 80 | 3syl 17 |
. . . . . . . . . 10
|
| 82 | simpllr 534 |
. . . . . . . . . 10
| |
| 83 | 76, 77, 81, 82 | fvmptd3 5730 |
. . . . . . . . 9
|
| 84 | 75, 83 | oveq12d 6025 |
. . . . . . . 8
|
| 85 | simplll 533 |
. . . . . . . . 9
| |
| 86 | eluzel2 9735 |
. . . . . . . . . 10
| |
| 87 | 78, 86 | syl 14 |
. . . . . . . . 9
|
| 88 | simpllr 534 |
. . . . . . . . . . 11
| |
| 89 | 88 | fmpttd 5792 |
. . . . . . . . . 10
|
| 90 | 89 | adantr 276 |
. . . . . . . . 9
|
| 91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 13439 |
. . . . . . . 8
|
| 92 | uznn0sub 9762 |
. . . . . . . . . 10
| |
| 93 | nn0p1nn 9416 |
. . . . . . . . . 10
| |
| 94 | 78, 92, 93 | 3syl 17 |
. . . . . . . . 9
|
| 95 | 36, 37, 47 | mulgnnp1 13675 |
. . . . . . . . 9
|
| 96 | 94, 82, 95 | syl2anc 411 |
. . . . . . . 8
|
| 97 | 84, 91, 96 | 3eqtr4d 2272 |
. . . . . . 7
|
| 98 | eluzelcn 9741 |
. . . . . . . . . . . 12
| |
| 99 | 86 | zcnd 9578 |
. . . . . . . . . . . . 13
|
| 100 | 99 | negcld 8452 |
. . . . . . . . . . . 12
|
| 101 | 1cnd 8170 |
. . . . . . . . . . . 12
| |
| 102 | 98, 100, 101 | add32d 8322 |
. . . . . . . . . . 11
|
| 103 | 98, 99 | negsubd 8471 |
. . . . . . . . . . . 12
|
| 104 | 103 | oveq1d 6022 |
. . . . . . . . . . 11
|
| 105 | 98, 101 | addcld 8174 |
. . . . . . . . . . . 12
|
| 106 | 105, 99 | negsubd 8471 |
. . . . . . . . . . 11
|
| 107 | 102, 104, 106 | 3eqtr3d 2270 |
. . . . . . . . . 10
|
| 108 | 107 | oveq1d 6022 |
. . . . . . . . 9
|
| 109 | 108 | oveq1d 6022 |
. . . . . . . 8
|
| 110 | 78, 109 | syl 14 |
. . . . . . 7
|
| 111 | 97, 110 | eqtrd 2262 |
. . . . . 6
|
| 112 | 111 | ex 115 |
. . . . 5
|
| 113 | 112 | expcom 116 |
. . . 4
|
| 114 | 113 | a2d 26 |
. . 3
|
| 115 | 10, 18, 26, 34, 69, 114 | uzind4 9791 |
. 2
|
| 116 | 1, 2, 115 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-igsum 13300 df-minusg 13545 df-mulg 13665 |
| This theorem is referenced by: gsumfzconstf 13887 lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |