| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmptfidmadd2 | GIF version | ||
| Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsummptfidmadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfidmadd.p | ⊢ + = (+g‘𝐺) |
| gsummptfidmadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumfzmptfidmadd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzmptfidmadd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsumfzmptfidmadd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) |
| gsumfzmptfidmadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) |
| gsumfzmptfidmadd.f | ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) |
| gsumfzmptfidmadd.h | ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) |
| Ref | Expression |
|---|---|
| gsumfzmptfidmadd2 | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumfzmptfidmadd.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gsumfzmptfidmadd.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | fzfigd 10525 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 4 | gsumfzmptfidmadd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) | |
| 5 | gsumfzmptfidmadd.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) | |
| 6 | gsumfzmptfidmadd.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)) |
| 8 | gsumfzmptfidmadd.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 10 | 3, 4, 5, 7, 9 | offval2 6152 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐻) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) |
| 11 | 10 | oveq2d 5939 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))) |
| 12 | gsummptfidmadd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 13 | gsummptfidmadd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 14 | gsummptfidmadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 15 | 12, 13, 14, 1, 2, 4, 5, 6, 8 | gsumfzmptfidmadd 13479 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 16 | 11, 15 | eqtrd 2229 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4095 ‘cfv 5259 (class class class)co 5923 ∘𝑓 cof 6134 Fincfn 6800 ℤcz 9328 ...cfz 10085 Basecbs 12688 +gcplusg 12765 Σg cgsu 12938 CMndccmn 13424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-of 6136 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-1o 6475 df-er 6593 df-en 6801 df-fin 6803 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-2 9051 df-n0 9252 df-z 9329 df-uz 9604 df-fz 10086 df-fzo 10220 df-seqfrec 10542 df-ndx 12691 df-slot 12692 df-base 12694 df-plusg 12778 df-0g 12939 df-igsum 12940 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-cmn 13426 |
| This theorem is referenced by: lgseisenlem3 15323 lgseisenlem4 15324 |
| Copyright terms: Public domain | W3C validator |