ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmptfidmadd2 GIF version

Theorem gsumfzmptfidmadd2 13446
Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmadd.b 𝐵 = (Base‘𝐺)
gsummptfidmadd.p + = (+g𝐺)
gsummptfidmadd.g (𝜑𝐺 ∈ CMnd)
gsumfzmptfidmadd.m (𝜑𝑀 ∈ ℤ)
gsumfzmptfidmadd.n (𝜑𝑁 ∈ ℤ)
gsumfzmptfidmadd.c ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)
gsumfzmptfidmadd.d ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)
gsumfzmptfidmadd.f 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
gsumfzmptfidmadd.h 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)
Assertion
Ref Expression
gsumfzmptfidmadd2 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥, +   𝑥,𝑀   𝑥,𝑁
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem gsumfzmptfidmadd2
StepHypRef Expression
1 gsumfzmptfidmadd.m . . . . 5 (𝜑𝑀 ∈ ℤ)
2 gsumfzmptfidmadd.n . . . . 5 (𝜑𝑁 ∈ ℤ)
31, 2fzfigd 10508 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
4 gsumfzmptfidmadd.c . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)
5 gsumfzmptfidmadd.d . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)
6 gsumfzmptfidmadd.f . . . . 5 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
76a1i 9 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶))
8 gsumfzmptfidmadd.h . . . . 5 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)
98a1i 9 . . . 4 (𝜑𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷))
103, 4, 5, 7, 9offval2 6151 . . 3 (𝜑 → (𝐹𝑓 + 𝐻) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))
1110oveq2d 5938 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))))
12 gsummptfidmadd.b . . 3 𝐵 = (Base‘𝐺)
13 gsummptfidmadd.p . . 3 + = (+g𝐺)
14 gsummptfidmadd.g . . 3 (𝜑𝐺 ∈ CMnd)
1512, 13, 14, 1, 2, 4, 5, 6, 8gsumfzmptfidmadd 13445 . 2 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
1611, 15eqtrd 2229 1 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cmpt 4094  cfv 5258  (class class class)co 5922  𝑓 cof 6133  Fincfn 6799  cz 9323  ...cfz 10080  Basecbs 12654  +gcplusg 12731   Σg cgsu 12904  CMndccmn 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-fzo 10215  df-seqfrec 10525  df-ndx 12657  df-slot 12658  df-base 12660  df-plusg 12744  df-0g 12905  df-igsum 12906  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-cmn 13392
This theorem is referenced by:  lgseisenlem3  15280  lgseisenlem4  15281
  Copyright terms: Public domain W3C validator