| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmptfidmadd2 | GIF version | ||
| Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsummptfidmadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfidmadd.p | ⊢ + = (+g‘𝐺) |
| gsummptfidmadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumfzmptfidmadd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzmptfidmadd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsumfzmptfidmadd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) |
| gsumfzmptfidmadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) |
| gsumfzmptfidmadd.f | ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) |
| gsumfzmptfidmadd.h | ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) |
| Ref | Expression |
|---|---|
| gsumfzmptfidmadd2 | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumfzmptfidmadd.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gsumfzmptfidmadd.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | fzfigd 10640 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 4 | gsumfzmptfidmadd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) | |
| 5 | gsumfzmptfidmadd.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) | |
| 6 | gsumfzmptfidmadd.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)) |
| 8 | gsumfzmptfidmadd.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 10 | 3, 4, 5, 7, 9 | offval2 6224 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐻) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) |
| 11 | 10 | oveq2d 6010 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))) |
| 12 | gsummptfidmadd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 13 | gsummptfidmadd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 14 | gsummptfidmadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 15 | 12, 13, 14, 1, 2, 4, 5, 6, 8 | gsumfzmptfidmadd 13862 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 16 | 11, 15 | eqtrd 2262 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ↦ cmpt 4144 ‘cfv 5314 (class class class)co 5994 ∘𝑓 cof 6206 Fincfn 6877 ℤcz 9434 ...cfz 10192 Basecbs 13018 +gcplusg 13096 Σg cgsu 13276 CMndccmn 13807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-igsum 13278 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-cmn 13809 |
| This theorem is referenced by: lgseisenlem3 15736 lgseisenlem4 15737 |
| Copyright terms: Public domain | W3C validator |