| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzmptfidmadd2 | GIF version | ||
| Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsummptfidmadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfidmadd.p | ⊢ + = (+g‘𝐺) |
| gsummptfidmadd.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumfzmptfidmadd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzmptfidmadd.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsumfzmptfidmadd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) |
| gsumfzmptfidmadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) |
| gsumfzmptfidmadd.f | ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) |
| gsumfzmptfidmadd.h | ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) |
| Ref | Expression |
|---|---|
| gsumfzmptfidmadd2 | ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumfzmptfidmadd.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | gsumfzmptfidmadd.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | fzfigd 10593 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 4 | gsumfzmptfidmadd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) | |
| 5 | gsumfzmptfidmadd.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) | |
| 6 | gsumfzmptfidmadd.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)) |
| 8 | gsumfzmptfidmadd.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 10 | 3, 4, 5, 7, 9 | offval2 6186 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐻) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) |
| 11 | 10 | oveq2d 5972 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))) |
| 12 | gsummptfidmadd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 13 | gsummptfidmadd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 14 | gsummptfidmadd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 15 | 12, 13, 14, 1, 2, 4, 5, 6, 8 | gsumfzmptfidmadd 13745 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 16 | 11, 15 | eqtrd 2239 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4112 ‘cfv 5279 (class class class)co 5956 ∘𝑓 cof 6168 Fincfn 6839 ℤcz 9387 ...cfz 10145 Basecbs 12902 +gcplusg 12979 Σg cgsu 13159 CMndccmn 13690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-1o 6514 df-er 6632 df-en 6840 df-fin 6842 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-2 9110 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-ndx 12905 df-slot 12906 df-base 12908 df-plusg 12992 df-0g 13160 df-igsum 13161 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-cmn 13692 |
| This theorem is referenced by: lgseisenlem3 15619 lgseisenlem4 15620 |
| Copyright terms: Public domain | W3C validator |