![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzfigd | Unicode version |
Description: Deduction form of fzfig 9898. (Contributed by Jim Kingdon, 21-May-2020.) |
Ref | Expression |
---|---|
fzfigd.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
fzfigd.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fzfigd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzfigd.m |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | fzfigd.n |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | fzfig 9898 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 404 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-1o 6195 df-er 6306 df-en 6512 df-fin 6514 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-inn 8484 df-n0 8735 df-z 8812 df-uz 9081 df-fz 9486 |
This theorem is referenced by: iseqf1olemqf1o 9983 iseqf1olemjpcl 9985 iseqf1olemqpcl 9986 iseqf1olemfvp 9987 seq3f1olemqsum 9990 seq3f1olemstep 9991 seq3f1olemp 9992 fseq1hash 10270 hashfz 10290 fnfz0hash 10298 isummolemnm 10830 isummolem2a 10832 isummolem2 10833 isummo 10834 zisum 10835 fisum 10839 fisumss 10845 fsumm1 10871 fsum1p 10873 fisum0diag 10896 fsumrev 10898 fsumshft 10899 fisum0diag2 10902 iserabs 10930 binomlem 10938 binom1dif 10942 isumsplit 10946 arisum2 10954 pwm1geoserap1 10963 geo2sum 10969 cvgratnnlemabsle 10982 cvgratnnlemrate 10985 mertenslemub 10989 mertenslemi1 10990 mertenslem2 10991 mertensabs 10992 efcvgfsum 11018 efaddlem 11025 eirraplem 11125 phivalfi 11527 phicl2 11529 hashdvds 11536 phiprmpw 11537 |
Copyright terms: Public domain | W3C validator |