ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzfigd Unicode version

Theorem fzfigd 10216
Description: Deduction form of fzfig 10215. (Contributed by Jim Kingdon, 21-May-2020.)
Hypotheses
Ref Expression
fzfigd.m  |-  ( ph  ->  M  e.  ZZ )
fzfigd.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
fzfigd  |-  ( ph  ->  ( M ... N
)  e.  Fin )

Proof of Theorem fzfigd
StepHypRef Expression
1 fzfigd.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 fzfigd.n . 2  |-  ( ph  ->  N  e.  ZZ )
3 fzfig 10215 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  Fin )
41, 2, 3syl2anc 408 1  |-  ( ph  ->  ( M ... N
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480  (class class class)co 5774   Fincfn 6634   ZZcz 9066   ...cfz 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-fz 9803
This theorem is referenced by:  iseqf1olemqf1o  10278  iseqf1olemjpcl  10280  iseqf1olemqpcl  10281  iseqf1olemfvp  10282  seq3f1olemqsum  10285  seq3f1olemstep  10286  seq3f1olemp  10287  fseq1hash  10559  hashfz  10579  fnfz0hash  10587  nnf1o  11157  summodclem2a  11162  summodclem2  11163  summodc  11164  zsumdc  11165  fsum3  11168  fisumss  11173  fsumm1  11197  fsum1p  11199  fisum0diag  11222  fsumrev  11224  fsumshft  11225  fisum0diag2  11228  iserabs  11256  binomlem  11264  binom1dif  11268  isumsplit  11272  arisum2  11280  pwm1geoserap1  11289  geo2sum  11295  cvgratnnlemabsle  11308  cvgratnnlemrate  11311  mertenslemub  11315  mertenslemi1  11316  mertenslem2  11317  mertensabs  11318  prodmodclem3  11356  prodmodclem2a  11357  prodmodclem2  11358  efcvgfsum  11385  efaddlem  11392  eirraplem  11494  phivalfi  11899  phicl2  11901  hashdvds  11908  phiprmpw  11909  cvgcmp2nlemabs  13313  trilpolemlt1  13320
  Copyright terms: Public domain W3C validator